Changes in / [9644b5a:dd4f5ed] in sasmodels
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
deploy.sh
r9d1e3e4 r2ba5ba5 1 if [ [ $encrypted_cb04388797b6_iv ]]1 if [ "$encrypted_cb04388797b6_iv" ] 2 2 then 3 3 eval "$(ssh-agent -s)" -
sasmodels/models/fractal_core_shell.py
r8f04da4 rca04add 22 22 \frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3}+ 23 23 3V_s(\rho_s-\rho_{solv}) 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 25 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 \\ 26 25 S(q) &= 1 + \frac{D_f\ \Gamma\!(D_f-1)}{[1+1/(q\xi)^2]^{(D_f-1)/2}} 27 26 \frac{\sin[(D_f-1)\tan^{-1}(q\xi)]}{(qr_s)^{D_f}} -
sasmodels/models/mass_surface_fractal.py
r232bb12 rca04add 22 22 .. math:: 23 23 24 I(q) = scale \times P(q) + background 25 24 I(q) = scale \times P(q) + background \\ 26 25 P(q) = \left\{ \left[ 1+(q^2a)\right]^{D_m/2} \times 27 26 \left[ 1+(q^2b)\right]^{(6-D_s-D_m)/2} 28 \right\}^{-1} 29 30 a = R_{g}^2/(3D_m/2) 31 32 b = r_{g}^2/[-3(D_s+D_m-6)/2] 33 27 \right\}^{-1} \\ 28 a = R_{g}^2/(3D_m/2) \\ 29 b = r_{g}^2/[-3(D_s+D_m-6)/2] \\ 34 30 scale = scale\_factor \times NV^2 (\rho_{particle} - \rho_{solvent})^2 35 31 -
sasmodels/models/mono_gauss_coil.py
r404ebbd rca04add 24 24 25 25 I_0 &= \phi_\text{poly} \cdot V 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 27 28 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 29 30 Z &= (q R_g)^2 31 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 \\ 27 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 28 Z &= (q R_g)^2 \\ 32 29 V &= M / (N_A \delta) 33 30 -
sasmodels/models/onion.py
rbccb40f rca04add 81 81 \left[ B\exp 82 82 \left(A (r - r_{\text{shell}-1}) / \Delta t_\text{shell} \right) + C 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r 84 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\ 85 84 &= 3BV(r_\text{shell}) e^A h(\alpha_\text{out},\beta_\text{out}) 86 85 - 3BV(r_{\text{shell}-1}) h(\alpha_\text{in},\beta_\text{in}) … … 95 94 \begin{align*} 96 95 B&=\frac{\rho_\text{out} - \rho_\text{in}}{e^A-1} 97 & C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\96 & C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\ 98 97 \alpha_\text{in} &= A\frac{r_{\text{shell}-1}}{\Delta t_\text{shell}} 99 & \alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\98 & \alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\ 100 99 \beta_\text{in} &= qr_{\text{shell}-1} 101 & \beta_\text{out} &= qr_\text{shell} \\100 & \beta_\text{out} &= qr_\text{shell} \\ 102 101 \end{align*} 103 102 -
sasmodels/models/parallelepiped.py
r30b60d2 rca04add 62 62 \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right] 63 63 S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right] 64 \right\}^2 du 65 66 S(x) &= \frac{\sin x}{x} 67 64 \right\}^2 du \\ 65 S(x) &= \frac{\sin x}{x} \\ 68 66 \mu &= qB 69 67 … … 133 131 .. math:: 134 132 135 \cos\alpha &= \hat A \cdot \hat q, 136 137 \cos\beta &= \hat B \cdot \hat q, 138 133 \cos\alpha &= \hat A \cdot \hat q, \\ 134 \cos\beta &= \hat B \cdot \hat q, \\ 139 135 \cos\gamma &= \hat C \cdot \hat q 140 136 -
sasmodels/models/poly_gauss_coil.py
r404ebbd rca04add 21 21 .. math:: 22 22 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 24 25 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] 26 27 Z &= [(q R_g)^2] / (1 + 2U) 28 29 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 30 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\ 24 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\ 25 Z &= [(q R_g)^2] / (1 + 2U) \\ 26 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\ 31 27 V &= M / (N_A \delta) 32 28 -
sasmodels/models/polymer_micelle.py
r404ebbd rca04add 26 26 27 27 .. math:: 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) 29 30 \beta_s = v\_core(sld\_core - sld\_solvent) 31 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) \\ 29 \beta_s = v\_core(sld\_core - sld\_solvent) \\ 32 30 \beta_c = v\_corona(sld\_corona - sld\_solvent) 33 31 … … 41 39 .. math:: 42 40 43 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 44 41 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 45 42 Z &= (q R_g)^2 46 43 … … 50 47 .. math:: 51 48 52 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} 53 54 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 55 49 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \\ 50 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 \\ 56 51 \psi(Z)=\frac{[1-exp^{-Z}]}{Z} 57 52 -
sasmodels/models/spherical_sld.py
r2ad5d30 rca04add 51 51 3 \rho_\text{core} V(r_\text{core}) 52 52 \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} 53 {qr_\text{core}^3} \Big] 54 53 {qr_\text{core}^3} \Big] \\ 55 54 f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 56 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr 57 55 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr \\ 58 56 f_{\text{shell}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 59 57 \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = … … 66 64 -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i }) 67 65 \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} 68 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] 69 66 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] \\ 70 67 f_\text{solvent} &= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} 71 68 \frac{\sin(qr)} {qr} r^2 dr = … … 122 119 4 \pi \sum_{j=1}^{n_\text{steps}} 123 120 \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) 124 \frac{\sin(qr)} {qr} r^2 dr 125 126 &\approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 121 \frac{\sin(qr)} {qr} r^2 dr \\ 122 \approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 127 123 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 128 124 ( r_{j} ) V (r_j) 129 125 \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) 130 126 - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } 131 {\beta_\text{out}^4 } \Big] 132 133 &{} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 127 {\beta_\text{out}^4 } \Big] \\ 128 {} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 134 129 ( r_{j} ) V ( r_{j-1} ) 135 130 \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) 136 131 - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } 137 {\beta_\text{in}^4 } \Big] 138 139 &{} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 132 {\beta_\text{in}^4 } \Big] \\ 133 {} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 140 134 \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } 141 135 {\beta_\text{out}^4 } \Big] … … 152 146 \begin{align*} 153 147 V(a) &= \frac {4\pi}{3}a^3 && \\ 154 a_\text{in} &\sim \frac{r_j}{r_{j+1} -r_j} \text{, } &a_\text{out}155 &\sim \frac{r_{j+1}}{r_{j+1} -r_j} \\156 \beta_\text{in} &= qr_j \text{, } & \beta_\text{out} &= qr_{j+1}148 a_\text{in} \sim \frac{r_j}{r_{j+1} -r_j} \text{, } & a_\text{out} 149 \sim \frac{r_{j+1}}{r_{j+1} -r_j} \\ 150 \beta_\text{in} &= qr_j \text{, } & \beta_\text{out} &= qr_{j+1} 157 151 \end{align*} 158 152 -
sasmodels/models/star_polymer.py
r30b60d2 r5da1ac8 36 36 Star polymers in solutions tend to have strong interparticle and osmotic 37 37 effects. Thus the Benoit equation may not work well for many real cases. 38 At small $q$ the Guinier term and hence $I(q=0)$ is the same as for $f$ arms 39 of radius of gyration $R_g$, as described for the :ref:`mono-gauss-coil` 40 model. A newer model for star polymer incorporating excluded volume has been 41 developed by Li et al in arXiv:1404.6269 [physics.chem-ph]. 38 A newer model for star polymer incorporating excluded volume has been 39 developed by Li et al in arXiv:1404.6269 [physics.chem-ph]. Also, at small 40 $q$ the scattering, i.e. the Guinier term, is not sensitive to the number of 41 arms, and hence 'scale' here is simply $I(q=0)$ as described for the 42 :ref:`mono-gauss-coil` model, using volume fraction $\phi$ and volume V 43 for the whole star polymer. 42 44 43 45 References
Note: See TracChangeset
for help on using the changeset viewer.