Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/hayter_msa.py

    r9947865 rdb1d9d5  
    11# Note: model title and parameter table are inserted automatically 
    22r""" 
    3 Calculates the interparticle structure factor for a system of charged,  
    4 spheroidal, objects in a dielectric medium [1,2]. When combined with an  
    5 appropriate form factor $P(q)$, this allows for inclusion of the  
    6 interparticle interference effects due to screened Coulombic  
     3Calculates the interparticle structure factor for a system of charged, 
     4spheroidal, objects in a dielectric medium [1,2]. When combined with an 
     5appropriate form factor $P(q)$, this allows for inclusion of the 
     6interparticle interference effects due to screened Coulombic 
    77repulsion between the charged particles. 
    88 
    99.. note:: 
    1010 
    11    This routine only works for charged particles! If the charge is set  
    12    to zero the routine may self-destruct! For uncharged particles use  
     11   This routine only works for charged particles! If the charge is set 
     12   to zero the routine may self-destruct! For uncharged particles use 
    1313   the :ref:`hardsphere` $S(q)$ instead. The upper limit for the charge 
    1414   is limited to 200e to avoid numerical instabilities. 
    15     
     15 
    1616.. note:: 
    1717 
    18    Earlier versions of SasView did not incorporate the so-called  
    19    $\beta(q)$ ("beta") correction [3] for polydispersity and non-sphericity.  
     18   Earlier versions of SasView did not incorporate the so-called 
     19   $\beta(q)$ ("beta") correction [3] for polydispersity and non-sphericity. 
    2020   This is only available in SasView versions 4.2.2 and higher. 
    2121 
    2222The salt concentration is used to compute the ionic strength of the solution 
    23 which in turn is used to compute the Debye screening length. There is no  
    24 provision for entering the ionic strength directly. **At present the  
    25 counterions are assumed to be monovalent**, though it should be possible  
    26 to simulate the effect of multivalent counterions by increasing the salt  
     23which in turn is used to compute the Debye screening length. There is no 
     24provision for entering the ionic strength directly. **At present the 
     25counterions are assumed to be monovalent**, though it should be possible 
     26to simulate the effect of multivalent counterions by increasing the salt 
    2727concentration. 
    2828 
    29 Over the range 0 - 100 C the dielectric constant $\kappa$ of water may be  
    30 approximated with a maximum deviation of 0.01 units by the empirical  
     29Over the range 0 - 100 C the dielectric constant $\kappa$ of water may be 
     30approximated with a maximum deviation of 0.01 units by the empirical 
    3131formula [4] 
    3232 
     
    3434 
    3535    \kappa = 87.740 - 0.40008 T + 9.398x10^{-4} T^2 - 1.410x10^{-6} T^3 
    36      
     36 
    3737where $T$ is the temperature in celsius. 
    3838 
     
    7373---------------------------- 
    7474 
    75 * **Author:**  
    76 * **Last Modified by:**  
     75* **Author:** 
     76* **Last Modified by:** 
    7777* **Last Reviewed by:** Steve King **Date:** March 28, 2019 
    7878* **Source added by :** Steve King **Date:** March 25, 2019 
     
    101101    [Hayter-Penfold RMSA charged sphere interparticle S(Q) structure factor] 
    102102        Interparticle structure factor S(Q) for charged hard spheres. 
    103     This routine only works for charged particles! For uncharged particles  
    104     use the hardsphere S(q) instead. The "beta(q)" correction is available  
     103    This routine only works for charged particles! For uncharged particles 
     104    use the hardsphere S(q) instead. The "beta(q)" correction is available 
    105105    in versions 4.2.2 and higher. 
    106106""" 
     
    110110#             [ "name", "units", default, [lower, upper], "type", "description" ], 
    111111# 
    112 # NOTE: SMK, 28Mar19 The upper limit for charge is set to 200 to avoid instabilities noted by PK in  
    113 #       Ticket #1152. Also see the thread in Ticket 859. The docs above also note that charge=0 will  
     112# NOTE: SMK, 28Mar19 The upper limit for charge is set to 200 to avoid instabilities noted by PK in 
     113#       Ticket #1152. Also see the thread in Ticket 859. The docs above also note that charge=0 will 
    114114#       cause problems, yet the default parameters allowed it! After discussions with PK I have 
    115 #       changed it to (an arbitarily) small but non-zero value.  But I haven't changed the low limit  
     115#       changed it to (an arbitarily) small but non-zero value.  But I haven't changed the low limit 
    116116#       in function random() below. 
    117117# 
Note: See TracChangeset for help on using the changeset viewer.