Changeset d5cc54c in sasmodels
- Timestamp:
- Jan 12, 2017 3:57:43 PM (8 years ago)
- Parents:
- 15ec718 (diff), 7c2935c (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - git-author:
- jhbakker <j.h.bakker@…> (01/12/17 15:57:43)
- git-committer:
- GitHub <noreply@…> (01/12/17 15:57:43)
- Files:
-
- 2 added
- 4 deleted
- 15 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/direct_model.py
r0444c02 rb397165 31 31 from . import resolution2d 32 32 from .details import make_kernel_args, dispersion_mesh 33 from sas.sasgui.perspectives.fitting.fitpage import FitPage34 33 35 34 try: … … 194 193 # interpret data 195 194 if hasattr(data, 'lam'): 196 #if not FitPage.no_transform.GetValue(): #if the no_transform radio button is not active DOES NOT WORK! not active before fitting197 195 self.data_type = 'sesans' 198 196 elif hasattr(data, 'qx_data'): -
sasmodels/kernel_header.c
r218cdbc rb7e8b94 148 148 inline double sinc(double x) { return x==0 ? 1.0 : sin(x)/x; } 149 149 150 #if 0 150 #if 1 151 //think cos(theta) should be sin(theta) in new coords, RKH 11Jan2017 151 152 #define ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sn, cn) do { \ 152 153 SINCOS(phi*M_PI_180, sn, cn); \ 153 154 q = sqrt(qx*qx + qy*qy); \ 154 cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * cos(theta*M_PI_180)); \155 cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * sin(theta*M_PI_180)); \ 155 156 sn = sqrt(1 - cn*cn); \ 156 157 } while (0) -
sasmodels/kernelpy.py
r777d369 rb397165 15 15 from .generate import F64 16 16 from .kernel import KernelModel, Kernel 17 import gc18 17 19 18 try: … … 80 79 """ 81 80 self.q = None 82 gc.collect()83 81 84 82 class PyKernel(Kernel): -
sasmodels/models/barbell.py
r0d6e865 rfcb33e4 20 20 .. math:: 21 21 22 I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q )\right>22 I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q,\alpha).sin(\alpha)\right> 23 23 24 where the amplitude $A(q )$ is given as24 where the amplitude $A(q,\alpha)$ with the rod axis at angle $\alpha$ to $q$ is given as 25 25 26 26 .. math:: 27 27 28 28 A(q) =&\ \pi r^2L 29 \frac{\sin\left(\tfrac12 qL\cos\ theta\right)}30 {\tfrac12 qL\cos\ theta}31 \frac{2 J_1(qr\sin\ theta)}{qr\sin\theta} \\29 \frac{\sin\left(\tfrac12 qL\cos\alpha\right)} 30 {\tfrac12 qL\cos\alpha} 31 \frac{2 J_1(qr\sin\alpha)}{qr\sin\alpha} \\ 32 32 &\ + 4 \pi R^3 \int_{-h/R}^1 dt 33 \cos\left[ q\cos\ theta33 \cos\left[ q\cos\alpha 34 34 \left(Rt + h + {\tfrac12} L\right)\right] 35 35 \times (1-t^2) 36 \frac{J_1\left[qR\sin\ theta \left(1-t^2\right)^{1/2}\right]}37 {qR\sin\ theta \left(1-t^2\right)^{1/2}}36 \frac{J_1\left[qR\sin\alpha \left(1-t^2\right)^{1/2}\right]} 37 {qR\sin\alpha \left(1-t^2\right)^{1/2}} 38 38 39 39 The $\left<\ldots\right>$ brackets denote an average of the structure over 40 all orientations. $\left<A^2(q )\right>$ is then the form factor, $P(q)$.40 all orientations. $\left<A^2(q,\alpha)\right>$ is then the form factor, $P(q)$. 41 41 The scale factor is equivalent to the volume fraction of cylinders, each of 42 42 volume, $V$. Contrast $\Delta\rho$ is the difference of scattering length … … 85 85 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 86 86 * **Last Modified by:** Paul Butler **Date:** March 20, 2016 87 * **Last Reviewed by:** Paul Butler **Date:** March 20, 201687 * **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017 88 88 """ 89 89 from numpy import inf -
sasmodels/models/capped_cylinder.py
r0d6e865 rfcb33e4 21 21 .. math:: 22 22 23 I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q )\right>23 I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q,\alpha).sin(\alpha)\right> 24 24 25 where the amplitude $A(q )$ is given as25 where the amplitude $A(q,\alpha)$ with the rod axis at angle $\alpha$ to $q$ is given as 26 26 27 27 .. math:: 28 28 29 29 A(q) =&\ \pi r^2L 30 \frac{\sin\left(\tfrac12 qL\cos\ theta\right)}31 {\tfrac12 qL\cos\ theta}32 \frac{2 J_1(qr\sin\ theta)}{qr\sin\theta} \\30 \frac{\sin\left(\tfrac12 qL\cos\alpha\right)} 31 {\tfrac12 qL\cos\alpha} 32 \frac{2 J_1(qr\sin\alpha)}{qr\sin\alpha} \\ 33 33 &\ + 4 \pi R^3 \int_{-h/R}^1 dt 34 \cos\left[ q\cos\ theta34 \cos\left[ q\cos\alpha 35 35 \left(Rt + h + {\tfrac12} L\right)\right] 36 36 \times (1-t^2) 37 \frac{J_1\left[qR\sin\ theta \left(1-t^2\right)^{1/2}\right]}38 {qR\sin\ theta \left(1-t^2\right)^{1/2}}37 \frac{J_1\left[qR\sin\alpha \left(1-t^2\right)^{1/2}\right]} 38 {qR\sin\alpha \left(1-t^2\right)^{1/2}} 39 39 40 40 The $\left<\ldots\right>$ brackets denote an average of the structure over … … 88 88 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 89 89 * **Last Modified by:** Paul Butler **Date:** September 30, 2016 90 * **Last Reviewed by:** Richard Heenan **Date:** March 19, 2016 90 * **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017 91 91 92 """ 92 93 from numpy import inf -
sasmodels/models/core_shell_bicelle.py
ra23639a rfcb33e4 41 41 42 42 I(Q,\alpha) = \frac{\text{scale}}{V_t} \cdot 43 F(Q,\alpha)^2 + \text{background}43 F(Q,\alpha)^2.sin(\alpha) + \text{background} 44 44 45 45 where … … 85 85 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 86 86 * **Last Modified by:** Paul Butler **Date:** September 30, 2016 87 * **Last Reviewed by:** Richard Heenan **Date:** October 5, 201687 * **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017 88 88 """ 89 89 -
sasmodels/models/core_shell_cylinder.py
r755ecc2 rfcb33e4 9 9 .. math:: 10 10 11 I(q,\alpha) = \frac{\text{scale}}{V_s} F^2(q ) + \text{background}11 I(q,\alpha) = \frac{\text{scale}}{V_s} F^2(q,\alpha).sin(\alpha) + \text{background} 12 12 13 13 where … … 15 15 .. math:: 16 16 17 F(q ) = &\ (\rho_c - \rho_s) V_c17 F(q,\alpha) = &\ (\rho_c - \rho_s) V_c 18 18 \frac{\sin \left( q \tfrac12 L\cos\alpha \right)} 19 19 {q \tfrac12 L\cos\alpha} -
sasmodels/models/core_shell_ellipsoid.py
r73e08ae r7c2935c 162 162 163 163 q = 0.1 164 phi = pi/6 165 qx = q*cos(p hi)166 qy = q*sin(p hi)167 # After redefinition of angles find new reasonable values for unit test168 #tests = [169 ## Accuracy tests based on content in test/utest_coreshellellipsoidXTmodel.py170 #[{'radius_equat_core': 200.0,171 #'x_core': 0.1,172 #'thick_shell': 50.0,173 #'x_polar_shell': 0.2,174 #'sld_core': 2.0,175 #'sld_shell': 1.0,176 #'sld_solvent': 6.3,177 #'background': 0.001,178 #'scale': 1.0,179 #}, 1.0, 0.00189402],164 # tests had in old coords theta=0, phi=0; new coords theta=90, phi=0 165 qx = q*cos(pi/6.0) 166 qy = q*sin(pi/6.0) 167 # 11Jan2017 RKH sorted tests after redefinition of angles 168 tests = [ 169 # Accuracy tests based on content in test/utest_coreshellellipsoidXTmodel.py 170 [{'radius_equat_core': 200.0, 171 'x_core': 0.1, 172 'thick_shell': 50.0, 173 'x_polar_shell': 0.2, 174 'sld_core': 2.0, 175 'sld_shell': 1.0, 176 'sld_solvent': 6.3, 177 'background': 0.001, 178 'scale': 1.0, 179 }, 1.0, 0.00189402], 180 180 181 181 # Additional tests with larger range of parameters 182 # [{'background': 0.01}, 0.1, 11.6915], 183 184 # [{'radius_equat_core': 20.0, 185 # 'x_core': 200.0, 186 # 'thick_shell': 54.0, 187 # 'x_polar_shell': 3.0, 188 # 'sld_core': 20.0, 189 # 'sld_shell': 10.0, 190 # 'sld_solvent': 6.0, 191 # 'background': 0.0, 192 # 'scale': 1.0, 193 # }, 0.01, 8688.53], 194 195 # [{'background': 0.001}, (0.4, 0.5), 0.00690673], 196 197 # [{'radius_equat_core': 20.0, 198 # 'x_core': 200.0, 199 # 'thick_shell': 54.0, 200 # 'x_polar_shell': 3.0, 201 # 'sld_core': 20.0, 202 # 'sld_shell': 10.0, 203 # 'sld_solvent': 6.0, 204 # 'background': 0.01, 205 # 'scale': 0.01, 206 # }, (qx, qy), 0.0100002], 207 # ] 182 [{'background': 0.01}, 0.1, 11.6915], 183 184 [{'radius_equat_core': 20.0, 185 'x_core': 200.0, 186 'thick_shell': 54.0, 187 'x_polar_shell': 3.0, 188 'sld_core': 20.0, 189 'sld_shell': 10.0, 190 'sld_solvent': 6.0, 191 'background': 0.0, 192 'scale': 1.0, 193 }, 0.01, 8688.53], 194 195 # 2D tests 196 [{'background': 0.001, 197 'theta': 90.0, 198 'phi': 0.0, 199 }, (0.4, 0.5), 0.00690673], 200 201 [{'radius_equat_core': 20.0, 202 'x_core': 200.0, 203 'thick_shell': 54.0, 204 'x_polar_shell': 3.0, 205 'sld_core': 20.0, 206 'sld_shell': 10.0, 207 'sld_solvent': 6.0, 208 'background': 0.01, 209 'scale': 0.01, 210 'theta': 90.0, 211 'phi': 0.0, 212 }, (qx, qy), 0.01000025], 213 ] -
sasmodels/models/cylinder.py
r4cdd0cc rb7e8b94 2 2 # Note: model title and parameter table are inserted automatically 3 3 r""" 4 The form factor is normalized by the particle volume V = \piR^2L. 4 5 5 For information about polarised and magnetic scattering, see 6 6 the :ref:`magnetism` documentation. … … 14 14 .. math:: 15 15 16 P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background}16 P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha).sin(\alpha) + \text{background} 17 17 18 18 where … … 25 25 \frac{J_1 \left(q R \sin \alpha\right)}{q R \sin \alpha} 26 26 27 and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V $27 and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V =\pi R^2L$ 28 28 is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the 29 29 radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length … … 35 35 .. math:: 36 36 37 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\ theta)\sin(\theta)d\theta}37 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha}=\int_{0}^{1}{F^2(q,u)du} 38 38 39 39 40 To provide easy access to the orientation of the cylinder, we define the 41 axis of the cylinder using two angles $\theta$ and $\phi$. Those angles 40 Numerical integration is simplified by a change of variable to $u = cos(\alpha)$ with 41 $sin(\alpha)=\sqrt{1-u^2}$. 42 43 The output of the 1D scattering intensity function for randomly oriented 44 cylinders is thus given by 45 46 .. math:: 47 48 P(q) = \frac{\text{scale}}{V} 49 \int_0^{\pi/2} F^2(q,\alpha) \sin \alpha\ d\alpha + \text{background} 50 51 52 NB: The 2nd virial coefficient of the cylinder is calculated based on the 53 radius and length values, and used as the effective radius for $S(q)$ 54 when $P(q) \cdot S(q)$ is applied. 55 56 For oriented cylinders, we define the direction of the 57 axis of the cylinder using two angles $\theta$ (note this is not the 58 same as the scattering angle used in q) and $\phi$. Those angles 42 59 are defined in :numref:`cylinder-angle-definition` . 43 60 … … 48 65 Definition of the angles for oriented cylinders. 49 66 50 51 NB: The 2nd virial coefficient of the cylinder is calculated based on the 52 radius and length values, and used as the effective radius for $S(q)$ 53 when $P(q) \cdot S(q)$ is applied. 54 55 The output of the 1D scattering intensity function for randomly oriented 56 cylinders is then given by 57 58 .. math:: 59 60 P(q) = \frac{\text{scale}}{V} 61 \int_0^{\pi/2} F^2(q,\alpha) \sin \alpha\ d\alpha + \text{background} 62 63 The $\theta$ and $\phi$ parameters are not used for the 1D output. 67 The $\theta$ and $\phi$ parameters only appear in the model when fitting 2d data. 64 68 65 69 Validation … … 74 78 75 79 P(q) = \int_0^{\pi/2} d\phi 76 \int_0^\pi p(\ alpha) P_0(q,\alpha) \sin \alpha\ d\alpha80 \int_0^\pi p(\theta) P_0(q,\theta) \sin \theta\ d\theta 77 81 78 82 79 83 where $p(\theta,\phi) = 1$ is the probability distribution for the orientation 80 and $P_0(q,\ alpha)$ is the scattering intensity for the fully oriented84 and $P_0(q,\theta)$ is the scattering intensity for the fully oriented 81 85 system, and then comparing to the 1D result. 82 86 … … 145 149 146 150 qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5) 147 # After redefinition of angles, find new tests values 148 #tests = [[{}, 0.2, 0.042761386790780453], 149 # [{}, [0.2], [0.042761386790780453]], 150 # [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03514647218513852], 151 # [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03514647218513852]], 152 # ] 151 # After redefinition of angles, find new tests values. Was 10 10 in old coords 152 tests = [[{}, 0.2, 0.042761386790780453], 153 [{}, [0.2], [0.042761386790780453]], 154 # new coords 155 [{'theta':80.1534480601659, 'phi':10.1510817110481}, (qx, qy), 0.03514647218513852], 156 [{'theta':80.1534480601659, 'phi':10.1510817110481}, [(qx, qy)], [0.03514647218513852]], 157 # old coords [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03514647218513852], 158 # [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03514647218513852]], 159 ] 153 160 del qx, qy # not necessary to delete, but cleaner 154 161 # ADDED by: RKH ON: 18Mar2016 renamed sld's etc -
sasmodels/models/elliptical_cylinder.py
ra807206 rfcb33e4 20 20 21 21 I(\vec q)=\frac{1}{V_\text{cyl}}\int{d\psi}\int{d\phi}\int{ 22 p(\theta,\phi,\psi)F^2(\vec q,\alpha,\psi)\sin(\ theta)d\theta}22 p(\theta,\phi,\psi)F^2(\vec q,\alpha,\psi)\sin(\alpha)d\alpha} 23 23 24 24 with the functions … … 26 26 .. math:: 27 27 28 F( \vecq,\alpha,\psi) = 2\frac{J_1(a)\sin(b)}{ab}28 F(q,\alpha,\psi) = 2\frac{J_1(a)\sin(b)}{ab} 29 29 30 30 where … … 32 32 .. math:: 33 33 34 a &= \vec q\sin(\alpha)\left[ 35 r^2_\text{major}\sin^2(\psi)+r^2_\text{minor}\cos(\psi) \right]^{1/2} 34 a = qr'\sin(\alpha) 35 36 b = q\frac{L}{2}\cos(\alpha) 37 38 r'=\frac{r_{minor}}{\sqrt{2}}\sqrt{(1+\nu^{2}) + (1-\nu^{2})cos(\psi)} 36 39 37 b &= \vec q\frac{L}{2}\cos(\alpha)38 40 39 and the angle $\ Psi$ is defined as the orientation of the major axis of the41 and the angle $\psi$ is defined as the orientation of the major axis of the 40 42 ellipse with respect to the vector $\vec q$. The angle $\alpha$ is the angle 41 43 between the axis of the cylinder and $\vec q$. … … 95 97 96 98 L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and 97 Neutron Scattering*, Plenum, New York, (1987) 99 Neutron Scattering*, Plenum, New York, (1987) [see table 3.4] 100 101 Authorship and Verification 102 ---------------------------- 103 104 * **Author:** 105 * **Last Modified by:** 106 * **Last Reviewed by:** Richard Heenan - corrected equation in docs **Date:** December 21, 2016 107 98 108 """ 99 109 -
sasmodels/models/stacked_disks.py
r07300ea rb7e8b94 148 148 sld_layer=0.0, 149 149 sld_solvent=5.0, 150 theta= 0,150 theta=90, 151 151 phi=0) 152 #After redefinition to spherical coordinates find new reasonable test values 153 #tests = [ 154 # # Accuracy tests based on content in test/utest_extra_models.py. 155 # # Added 2 tests with n_stacked = 5 using SasView 3.1.2 - PDB 156 # [{'thick_core': 10.0, 157 # 'thick_layer': 15.0, 158 # 'radius': 3000.0, 159 # 'n_stacking': 1.0, 160 # 'sigma_d': 0.0, 161 # 'sld_core': 4.0, 162 # 'sld_layer': -0.4, 163 # 'solvent_sd': 5.0, 164 # 'theta': 0.0, 165 # 'phi': 0.0, 166 # 'scale': 0.01, 167 # 'background': 0.001, 168 # }, 0.001, 5075.12], 169 170 # [{'thick_core': 10.0, 171 # 'thick_layer': 15.0, 172 # 'radius': 3000.0, 173 # 'n_stacking': 5.0, 174 # 'sigma_d': 0.0, 175 # 'sld_core': 4.0, 176 # 'sld_layer': -0.4, 177 # 'solvent_sd': 5.0, 178 # 'theta': 0.0, 179 # 'phi': 0.0, 180 # 'scale': 0.01, 181 # 'background': 0.001, 182 # }, 0.001, 5065.12793824], 183 184 # [{'thick_core': 10.0, 185 # 'thick_layer': 15.0, 186 # 'radius': 3000.0, 187 # 'n_stacking': 5.0, 188 # 'sigma_d': 0.0, 189 # 'sld_core': 4.0, 190 # 'sld_layer': -0.4, 191 # 'solvent_sd': 5.0, 192 # 'theta': 0.0, 193 # 'phi': 0.0, 194 # 'scale': 0.01, 195 # 'background': 0.001, 196 # }, 0.164, 0.0127673597265], 197 198 # [{'thick_core': 10.0, 199 # 'thick_layer': 15.0, 200 # 'radius': 3000.0, 201 # 'n_stacking': 1.0, 202 # 'sigma_d': 0.0, 203 # 'sld_core': 4.0, 204 # 'sld_layer': -0.4, 205 # 'solvent_sd': 5.0, 206 # 'theta': 0.0, 207 # 'phi': 0.0, 208 # 'scale': 0.01, 209 # 'background': 0.001, 210 # }, [0.001, 90.0], [5075.12, 0.001]], 211 212 # [{'thick_core': 10.0, 213 # 'thick_layer': 15.0, 214 # 'radius': 3000.0, 215 # 'n_stacking': 1.0, 216 # 'sigma_d': 0.0, 217 # 'sld_core': 4.0, 218 # 'sld_layer': -0.4, 219 # 'solvent_sd': 5.0, 220 # 'theta': 0.0, 221 # 'phi': 0.0, 222 # 'scale': 0.01, 223 # 'background': 0.001, 224 # }, ([0.4, 0.5]), [0.00105074, 0.00121761]], 225 226 # [{'thick_core': 10.0, 227 # 'thick_layer': 15.0, 228 # 'radius': 3000.0, 229 # 'n_stacking': 1.0, 230 # 'sigma_d': 0.0, 231 # 'sld_core': 4.0, 232 # 'sld_layer': -0.4, 233 # 'solvent_sd': 5.0, 234 # 'theta': 0.0, 235 # 'phi': 0.0, 236 # 'scale': 0.01, 237 # 'background': 0.001, 238 # }, ([1.3, 1.57]), [0.0010039, 0.0010038]], 239 # ] 240 # 21Mar2016 RKH notes that unit tests all have n_stacking=1, ought to test other values 241 152 # After redefinition of spherical coordinates - 153 # tests had in old coords theta=0, phi=0; new coords theta=90, phi=0 154 # but should not matter here as so far all the tests are 1D not 2D 155 tests = [ 156 # Accuracy tests based on content in test/utest_extra_models.py. 157 # Added 2 tests with n_stacked = 5 using SasView 3.1.2 - PDB; for which alas q=0.001 values seem closer to n_stacked=1 not 5, changed assuming my 4.1 code OK, RKH 158 [{'thick_core': 10.0, 159 'thick_layer': 15.0, 160 'radius': 3000.0, 161 'n_stacking': 1.0, 162 'sigma_d': 0.0, 163 'sld_core': 4.0, 164 'sld_layer': -0.4, 165 'solvent_sd': 5.0, 166 'theta': 90.0, 167 'phi': 0.0, 168 'scale': 0.01, 169 'background': 0.001, 170 }, 0.001, 5075.12], 171 [{'thick_core': 10.0, 172 'thick_layer': 15.0, 173 'radius': 3000.0, 174 'n_stacking': 5, 175 'sigma_d': 0.0, 176 'sld_core': 4.0, 177 'sld_layer': -0.4, 178 'solvent_sd': 5.0, 179 'theta': 90.0, 180 'phi': 0.0, 181 'scale': 0.01, 182 'background': 0.001, 183 # }, 0.001, 5065.12793824], n_stacking=1 not 5 ? slight change in value here 11jan2017, check other cpu types 184 # }, 0.001, 5075.11570493], 185 }, 0.001, 25325.635693], 186 [{'thick_core': 10.0, 187 'thick_layer': 15.0, 188 'radius': 3000.0, 189 'n_stacking': 5, 190 'sigma_d': 0.0, 191 'sld_core': 4.0, 192 'sld_layer': -0.4, 193 'solvent_sd': 5.0, 194 'theta': 90.0, 195 'phi': 0.0, 196 'scale': 0.01, 197 'background': 0.001, 198 # }, 0.164, 0.0127673597265], n_stacking=1 not 5 ? slight change in value here 11jan2017, check other cpu types 199 # }, 0.164, 0.01480812968], 200 }, 0.164, 0.0598367986509], 201 202 [{'thick_core': 10.0, 203 'thick_layer': 15.0, 204 'radius': 3000.0, 205 'n_stacking': 1.0, 206 'sigma_d': 0.0, 207 'sld_core': 4.0, 208 'sld_layer': -0.4, 209 'solvent_sd': 5.0, 210 'theta': 90.0, 211 'phi': 0.0, 212 'scale': 0.01, 213 'background': 0.001, 214 # second test here was at q=90, changed it to q=5, note I(q) is then just value of flat background 215 }, [0.001, 5.0], [5075.12, 0.001]], 216 217 [{'thick_core': 10.0, 218 'thick_layer': 15.0, 219 'radius': 3000.0, 220 'n_stacking': 1.0, 221 'sigma_d': 0.0, 222 'sld_core': 4.0, 223 'sld_layer': -0.4, 224 'solvent_sd': 5.0, 225 'theta': 90.0, 226 'phi': 0.0, 227 'scale': 0.01, 228 'background': 0.001, 229 }, ([0.4, 0.5]), [0.00105074, 0.00121761]], 230 231 [{'thick_core': 10.0, 232 'thick_layer': 15.0, 233 'radius': 3000.0, 234 'n_stacking': 1.0, 235 'sigma_d': 0.0, 236 'sld_core': 4.0, 237 'sld_layer': -0.4, 238 'solvent_sd': 5.0, 239 'theta': 90.0, 240 'phi': 0.0, 241 'scale': 0.01, 242 'background': 0.001, 243 }, ([1.3, 1.57]), [0.0010039, 0.0010038]], 244 ] 245 # 11Jan2017 RKH checking unit test agai, note they are all 1D, no 2D 246 -
sasmodels/resolution.py
r26b848d rb397165 9 9 from numpy import sqrt, log, log10, exp, pi # type: ignore 10 10 import numpy as np # type: ignore 11 12 from sasmodels import sesans13 from sasmodels.sesans import SesansTransform as SesansTransform14 11 15 12 __all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D", … … 46 43 raise NotImplementedError("Subclass does not define the apply function") 47 44 45 48 46 class Perfect1D(Resolution): 49 47 """ … … 57 55 def apply(self, theory): 58 56 return theory 57 59 58 60 59 class Pinhole1D(Resolution): -
sasmodels/resolution2d.py
r40a87fa r7e94989 64 64 # just need q_calc and weights 65 65 self.data = data 66 self.index = index 67 68 self.qx_data = data.qx_data[ index]69 self.qy_data = data.qy_data[ index]70 self.q_data = data.q_data[ index]66 self.index = index if index is not None else slice(None) 67 68 self.qx_data = data.qx_data[self.index] 69 self.qy_data = data.qy_data[self.index] 70 self.q_data = data.q_data[self.index] 71 71 72 72 dqx = getattr(data, 'dqx_data', None) … … 74 74 if dqx is not None and dqy is not None: 75 75 # Here dqx and dqy mean dq_parr and dq_perp 76 self.dqx_data = dqx[ index]77 self.dqy_data = dqy[ index]76 self.dqx_data = dqx[self.index] 77 self.dqy_data = dqy[self.index] 78 78 ## Remove singular points if exists 79 79 self.dqx_data[self.dqx_data < SIGMA_ZERO] = SIGMA_ZERO … … 126 126 # The angle (phi) of the original q point 127 127 q_phi = np.arctan(q_phi).repeat(nbins)\ 128 .reshape( nq, nbins).transpose().flatten()128 .reshape([nq, nbins]).transpose().flatten() 129 129 ## Find Gaussian weight for each dq bins: The weight depends only 130 130 # on r-direction (The integration may not need) -
sasmodels/sasview_model.py
r8977226 r64614ad 583 583 % type(qdist)) 584 584 585 def get_composition_models(self): 586 """ 587 Returns usable models that compose this model 588 """ 589 s_model = None 590 p_model = None 591 if hasattr(self._model_info, "composition") \ 592 and self._model_info.composition is not None: 593 p_model = _make_model_from_info(self._model_info.composition[1][0])() 594 s_model = _make_model_from_info(self._model_info.composition[1][1])() 595 return p_model, s_model 596 585 597 def calculate_Iq(self, qx, qy=None): 586 598 # type: (Sequence[float], Optional[Sequence[float]]) -> np.ndarray -
sasmodels/sesans.py
r15ec718 rb397165 14 14 import numpy as np # type: ignore 15 15 from numpy import pi, exp # type: ignore 16 from scipy.special import j 017 # from mpmath import j0 as j016 from scipy.special import jv as besselj 17 #import direct_model.DataMixin as model 18 18 19 class SesansTransform(object): 20 #: Set of spin-echo lengths in the measured data 21 SE = None # type: np.ndarray 22 #: Maximum acceptance of scattering vector in the spin echo encoding dimension (for ToF: Q of min(R) and max(lam)) 23 zaccept = None # type: float 24 #: Maximum size sensitivity; larger radius requires more computation 25 Rmax = None # type: float 26 #: q values to calculate when computing transform 27 q = None # type: np.ndarray 28 29 # transform arrays 30 _H = None # type: np.ndarray 31 _H0 = None # type: np.ndarray 32 33 def set_transform(self, SE, zaccept, Rmax): 34 if self.SE is None or len(SE) != len(self.SE) or np.any(SE != self.SE) or zaccept != self.zaccept or Rmax != self.Rmax: 35 self.SE, self.zaccept, self.Rmax = SE, zaccept, Rmax 36 self._set_q() 37 self._set_hankel() 38 39 def apply(self, Iq): 40 G0 = np.dot(self._H0, Iq) 41 G = np.dot(self._H.T, Iq) 42 P = G - G0 43 return P 44 45 def _set_q(self): 46 #q_min = dq = 0.1 * 2*pi / self.Rmax 47 48 q_max = 2*pi / (self.SE[1]-self.SE[0]) 49 q_min = dq = 0.1 *2*pi / (np.size(self.SE) * self.SE[-1]) 50 51 #q_min = dq = q_max / 100000 52 q=np.arange(q_min, q_max, q_min) 53 self.q = q 54 self.dq = dq 55 56 def _set_hankel(self): 57 #Rmax = #value in text box somewhere in FitPage? 58 q = self.q 59 dq = self.dq 60 SElength = self.SE 61 62 H0 = dq / (2 * pi) * q 63 q=np.array(q,dtype='float32') 64 SElength=np.array(SElength,dtype='float32') 65 66 # Using numpy tile, dtype is conserved 67 repq=np.tile(q,(SElength.size,1)) 68 repSE=np.tile(SElength,(q.size,1)) 69 H = dq / (2 * pi) * j0(repSE*repq.T)*repq.T 70 71 # Using numpy meshgrid - meshgrid produces float64 from float32 inputs! Problem for 32-bit OS: Memerrors! 72 #H0 = dq / (2 * pi) * q 73 #repSE, repq = np.meshgrid(SElength, q) 74 #repq=np.array(repq,dtype='float32') 75 #repSE=np.array(repSE,dtype='float32') 76 #H = dq / (2 * pi) * j0(repSE*repq)*repq 77 78 self._H, self._H0 = H, H0 79 80 class SESANS1D(SesansTransform): 81 def __init__(self, data, _H0, _H, q_calc): 82 # x values of the data (Sasview requires these to be named "q") 83 self.q = data.x 84 self._H0 = _H0 85 self._H = _H 86 # Pysmear does some checks on the smearer object, these checks require the "data" object... 87 self.data=data 88 # q values of the SAS model 89 self.q_calc = q_calc # These are the MODEL's q values used by the smearer (in this case: the Hankel transform) 90 def apply(self, theory): 91 return SesansTransform.apply(self,theory) 19 def make_q(q_max, Rmax): 20 r""" 21 Return a $q$ vector suitable for SESANS covering from $2\pi/ (10 R_{\max})$ 22 to $q_max$. This is the integration range of the Hankel transform; bigger range and 23 more points makes a better numerical integration. 24 Smaller q_min will increase reliable spin echo length range. 25 Rmax is the "radius" of the largest expected object and can be set elsewhere. 26 q_max is determined by the acceptance angle of the SESANS instrument. 27 """ 28 from sas.sascalc.data_util.nxsunit import Converter 29 30 q_min = dq = 0.1 * 2*pi / Rmax 31 return np.arange(q_min, 32 Converter(q_max[1])(q_max[0], 33 units="1/A"), 34 dq) 35 36 def make_all_q(data): 37 """ 38 Return a $q$ vector suitable for calculating the total scattering cross section for 39 calculating the effect of finite acceptance angles on Time of Flight SESANS instruments. 40 If no acceptance is given, or unwanted (set "unwanted" flag in paramfile), no all_q vector is needed. 41 If the instrument has a rectangular acceptance, 2 all_q vectors are needed. 42 If the instrument has a circular acceptance, 1 all_q vector is needed 43 44 """ 45 if not data.has_no_finite_acceptance: 46 return [] 47 elif data.has_yz_acceptance(data): 48 # compute qx, qy 49 Qx, Qy = np.meshgrid(qx, qy) 50 return [Qx, Qy] 51 else: 52 # else only need q 53 # data.has_z_acceptance 54 return [q] 55 56 def transform(data, q_calc, Iq_calc, qmono, Iq_mono): 57 """ 58 Decides which transform type is to be used, based on the experiment data file contents (header) 59 (2016-03-19: currently controlled from parameters script) 60 nqmono is the number of q vectors to be used for the detector integration 61 """ 62 nqmono = len(qmono) 63 if nqmono == 0: 64 result = call_hankel(data, q_calc, Iq_calc) 65 elif nqmono == 1: 66 q = qmono[0] 67 result = call_HankelAccept(data, q_calc, Iq_calc, q, Iq_mono) 68 else: 69 Qx, Qy = [qmono[0], qmono[1]] 70 Qx = np.reshape(Qx, nqx, nqy) 71 Qy = np.reshape(Qy, nqx, nqy) 72 Iq_mono = np.reshape(Iq_mono, nqx, nqy) 73 qx = Qx[0, :] 74 qy = Qy[:, 0] 75 result = call_Cosine2D(data, q_calc, Iq_calc, qx, qy, Iq_mono) 76 77 return result 78 79 def call_hankel(data, q_calc, Iq_calc): 80 return hankel((data.x, data.x_unit), 81 (data.lam, data.lam_unit), 82 (data.sample.thickness, 83 data.sample.thickness_unit), 84 q_calc, Iq_calc) 85 86 def call_HankelAccept(data, q_calc, Iq_calc, q_mono, Iq_mono): 87 return hankel(data.x, data.lam * 1e-9, 88 data.sample.thickness / 10, 89 q_calc, Iq_calc) 90 91 def call_Cosine2D(data, q_calc, Iq_calc, qx, qy, Iq_mono): 92 return hankel(data.x, data.y, data.lam * 1e-9, 93 data.sample.thickness / 10, 94 q_calc, Iq_calc) 95 96 def TotalScatter(model, parameters): #Work in progress!! 97 # Calls a model with existing model parameters already in place, then integrate the product of q and I(q) from 0 to (4*pi/lambda) 98 allq = np.linspace(0,4*pi/wavelength,1000) 99 allIq = 1 100 integral = allq*allIq 101 102 103 104 def Cosine2D(wavelength, magfield, thickness, qy, qz, Iqy, Iqz, modelname): #Work in progress!! Needs to call model still 105 #============================================================================== 106 # 2D Cosine Transform if "wavelength" is a vector 107 #============================================================================== 108 #allq is the q-space needed to create the total scattering cross-section 109 110 Gprime = np.zeros_like(wavelength, 'd') 111 s = np.zeros_like(wavelength, 'd') 112 sd = np.zeros_like(wavelength, 'd') 113 Gprime = np.zeros_like(wavelength, 'd') 114 f = np.zeros_like(wavelength, 'd') 115 for i, wavelength_i in enumerate(wavelength): 116 z = magfield*wavelength_i 117 allq=np.linspace() #for calculating the Q-range of the scattering power integral 118 allIq=np.linspace() # This is the model applied to the allq q-space. Needs to refference the model somehow 119 alldq = (allq[1]-allq[0])*1e10 120 sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 121 s[i]=1-exp(-sigma) 122 for j, Iqy_j, qy_j in enumerate(qy): 123 for k, Iqz_k, qz_k in enumerate(qz): 124 Iq = np.sqrt(Iqy_j^2+Iqz_k^2) 125 q = np.sqrt(qy_j^2 + qz_k^2) 126 Gintegral = Iq*cos(z*Qz_k) 127 Gprime[i] += Gintegral 128 # sigma = wavelength^2*thickness/2/pi* allq[i]*allIq[i] 129 # s[i] += 1-exp(Totalscatter(modelname)*thickness) 130 # For now, work with standard 2-phase scatter 131 132 133 sd[i] += Iq 134 f[i] = 1-s[i]+sd[i] 135 P[i] = (1-sd[i]/f[i])+1/f[i]*Gprime[i] 136 137 138 139 140 def HankelAccept(wavelength, magfield, thickness, q, Iq, theta, modelname): 141 #============================================================================== 142 # HankelTransform with fixed circular acceptance angle (circular aperture) for Time of Flight SESANS 143 #============================================================================== 144 #acceptq is the q-space needed to create limited acceptance effect 145 SElength= wavelength*magfield 146 G = np.zeros_like(SElength, 'd') 147 threshold=2*pi*theta/wavelength 148 for i, SElength_i in enumerate(SElength): 149 allq=np.linspace() #for calculating the Q-range of the scattering power integral 150 allIq=np.linspace() # This is the model applied to the allq q-space. Needs to refference the model somehow 151 alldq = (allq[1]-allq[0])*1e10 152 sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 153 s[i]=1-exp(-sigma) 154 155 dq = (q[1]-q[0])*1e10 156 a = (x<threshold) 157 acceptq = a*q 158 acceptIq = a*Iq 159 160 G[i] = np.sum(besselj(0, acceptq*SElength_i)*acceptIq*acceptq*dq) 161 162 # G[i]=np.sum(integral) 163 164 G *= dq*1e10*2*pi 165 166 P = exp(thickness*wavelength**2/(4*pi**2)*(G-G[0])) 167 168 def hankel(SElength, wavelength, thickness, q, Iq): 169 r""" 170 Compute the expected SESANS polarization for a given SANS pattern. 171 172 Uses the hankel transform followed by the exponential. The values for *zz* 173 (or spin echo length, or delta), wavelength and sample thickness should 174 come from the dataset. $q$ should be chosen such that the oscillations 175 in $I(q)$ are well sampled (e.g., $5 \cdot 2 \pi/d_{\max}$). 176 177 *SElength* [A] is the set of $z$ points at which to compute the 178 Hankel transform 179 180 *wavelength* [m] is the wavelength of each individual point *zz* 181 182 *thickness* [cm] is the sample thickness. 183 184 *q* [A$^{-1}$] is the set of $q$ points at which the model has been 185 computed. These should be equally spaced. 186 187 *I* [cm$^{-1}$] is the value of the SANS model at *q* 188 """ 189 190 from sas.sascalc.data_util.nxsunit import Converter 191 wavelength = Converter(wavelength[1])(wavelength[0],"A") 192 thickness = Converter(thickness[1])(thickness[0],"A") 193 Iq = Converter("1/cm")(Iq,"1/A") # All models default to inverse centimeters 194 SElength = Converter(SElength[1])(SElength[0],"A") 195 196 G = np.zeros_like(SElength, 'd') 197 #============================================================================== 198 # Hankel Transform method if "wavelength" is a scalar; mono-chromatic SESANS 199 #============================================================================== 200 for i, SElength_i in enumerate(SElength): 201 integral = besselj(0, q*SElength_i)*Iq*q 202 G[i] = np.sum(integral) 203 G0 = np.sum(Iq*q) 204 205 # [m^-1] step size in q, needed for integration 206 dq = (q[1]-q[0]) 207 208 # integration step, convert q into [m**-1] and 2 pi circle integration 209 G *= dq*2*pi 210 G0 = np.sum(Iq*q)*dq*2*np.pi 211 212 P = exp(thickness*wavelength**2/(4*pi**2)*(G-G0)) 213 214 return P
Note: See TracChangeset
for help on using the changeset viewer.