Changes in / [31d22de:d5ac45f] in sasmodels


Ignore:
Location:
sasmodels
Files:
2 deleted
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/kernelpy.py

    rd5ac45f rd5ac45f  
    128128 
    129129    def __call__(self, fixed, pd, cutoff=1e-5): 
    130         #print("fixed",fixed) 
    131         #print("pd", pd) 
     130        print("fixed",fixed) 
     131        print("pd", pd) 
    132132        args = self.args[:]  # grab a copy of the args 
    133133        form, form_volume = self.kernel, self.info['form_volume'] 
     
    187187    ################################################################ 
    188188 
     189    #TODO: Wojtek's notes 
     190    #TODO: The goal is to restructure polydispersity loop 
     191    #so it allows fitting arbitrary polydispersity parameters 
     192    #and it accepts cases like coupled parameters 
    189193    weight = np.empty(len(pd), 'd') 
    190194    if weight.size > 0: 
     
    260264    result = scale * ret / norm + background 
    261265    return result 
     266 
     267""" 
     268Python driver for python kernels 
     269 
     270Calls the kernel with a vector of $q$ values for a single parameter set. 
     271Polydispersity is supported by looping over different parameter sets and 
     272summing the results.  The interface to :class:`PyModel` matches those for 
     273:class:`kernelcl.GpuModel` and :class:`kerneldll.DllModel`. 
     274""" 
     275import numpy as np 
     276from numpy import pi, cos 
     277 
     278from .generate import F64 
     279 
     280class PyModel(object): 
     281    """ 
     282    Wrapper for pure python models. 
     283    """ 
     284    def __init__(self, model_info): 
     285        self.info = model_info 
     286 
     287    def __call__(self, q_vectors): 
     288        q_input = PyInput(q_vectors, dtype=F64) 
     289        kernel = self.info['Iqxy'] if q_input.is_2d else self.info['Iq'] 
     290        return PyKernel(kernel, self.info, q_input) 
     291 
     292    def release(self): 
     293        """ 
     294        Free resources associated with the model. 
     295        """ 
     296        pass 
     297 
     298class PyInput(object): 
     299    """ 
     300    Make q data available to the gpu. 
     301 
     302    *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, 
     303    and *[qx, qy]* for 2-D data.  Internally, the vectors will be reallocated 
     304    to get the best performance on OpenCL, which may involve shifting and 
     305    stretching the array to better match the memory architecture.  Additional 
     306    points will be evaluated with *q=1e-3*. 
     307 
     308    *dtype* is the data type for the q vectors. The data type should be 
     309    set to match that of the kernel, which is an attribute of 
     310    :class:`GpuProgram`.  Note that not all kernels support double 
     311    precision, so even if the program was created for double precision, 
     312    the *GpuProgram.dtype* may be single precision. 
     313 
     314    Call :meth:`release` when complete.  Even if not called directly, the 
     315    buffer will be released when the data object is freed. 
     316    """ 
     317    def __init__(self, q_vectors, dtype): 
     318        self.nq = q_vectors[0].size 
     319        self.dtype = dtype 
     320        self.is_2d = (len(q_vectors) == 2) 
     321        self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] 
     322        self.q_pointers = [q.ctypes.data for q in self.q_vectors] 
     323 
     324    def release(self): 
     325        """ 
     326        Free resources associated with the model inputs. 
     327        """ 
     328        self.q_vectors = [] 
     329 
     330class PyKernel(object): 
     331    """ 
     332    Callable SAS kernel. 
     333 
     334    *kernel* is the DllKernel object to call. 
     335 
     336    *model_info* is the module information 
     337 
     338    *q_input* is the DllInput q vectors at which the kernel should be 
     339    evaluated. 
     340 
     341    The resulting call method takes the *pars*, a list of values for 
     342    the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) 
     343    vectors for the polydisperse parameters.  *cutoff* determines the 
     344    integration limits: any points with combined weight less than *cutoff* 
     345    will not be calculated. 
     346 
     347    Call :meth:`release` when done with the kernel instance. 
     348    """ 
     349    def __init__(self, kernel, model_info, q_input): 
     350        self.info = model_info 
     351        self.q_input = q_input 
     352        self.res = np.empty(q_input.nq, q_input.dtype) 
     353        dim = '2d' if q_input.is_2d else '1d' 
     354        # Loop over q unless user promises that the kernel is vectorized by 
     355        # taggining it with vectorized=True 
     356        if not getattr(kernel, 'vectorized', False): 
     357            if dim == '2d': 
     358                def vector_kernel(qx, qy, *args): 
     359                    """ 
     360                    Vectorized 2D kernel. 
     361                    """ 
     362                    return np.array([kernel(qxi, qyi, *args) 
     363                                     for qxi, qyi in zip(qx, qy)]) 
     364            else: 
     365                def vector_kernel(q, *args): 
     366                    """ 
     367                    Vectorized 1D kernel. 
     368                    """ 
     369                    return np.array([kernel(qi, *args) 
     370                                     for qi in q]) 
     371            self.kernel = vector_kernel 
     372        else: 
     373            self.kernel = kernel 
     374        fixed_pars = model_info['partype']['fixed-' + dim] 
     375        pd_pars = model_info['partype']['pd-' + dim] 
     376        vol_pars = model_info['partype']['volume'] 
     377 
     378        # First two fixed pars are scale and background 
     379        pars = [p.name for p in model_info['parameters'][2:]] 
     380        offset = len(self.q_input.q_vectors) 
     381        self.args = self.q_input.q_vectors + [None] * len(pars) 
     382        self.fixed_index = np.array([pars.index(p) + offset 
     383                                     for p in fixed_pars[2:]]) 
     384        self.pd_index = np.array([pars.index(p) + offset 
     385                                  for p in pd_pars]) 
     386        self.vol_index = np.array([pars.index(p) + offset 
     387                                   for p in vol_pars]) 
     388        try: self.theta_index = pars.index('theta') + offset 
     389        except ValueError: self.theta_index = -1 
     390 
     391        # Caller needs fixed_pars and pd_pars 
     392        self.fixed_pars = fixed_pars 
     393        self.pd_pars = pd_pars 
     394 
     395    def __call__(self, fixed, pd, cutoff=1e-5): 
     396        #print("fixed",fixed) 
     397        #print("pd", pd) 
     398        args = self.args[:]  # grab a copy of the args 
     399        form, form_volume = self.kernel, self.info['form_volume'] 
     400        # First two fixed 
     401        scale, background = fixed[:2] 
     402        for index, value in zip(self.fixed_index, fixed[2:]): 
     403            args[index] = float(value) 
     404        res = _loops(form, form_volume, cutoff, scale, background, args, 
     405                     pd, self.pd_index, self.vol_index, self.theta_index) 
     406 
     407        return res 
     408 
     409    def release(self): 
     410        """ 
     411        Free resources associated with the kernel. 
     412        """ 
     413        self.q_input = None 
     414 
     415def _loops(form, form_volume, cutoff, scale, background, 
     416           args, pd, pd_index, vol_index, theta_index): 
     417    """ 
     418    *form* is the name of the form function, which should be vectorized over 
     419    q, but otherwise have an interface like the opencl kernels, with the 
     420    q parameters first followed by the individual parameters in the order 
     421    given in model.parameters (see :mod:`sasmodels.generate`). 
     422 
     423    *form_volume* calculates the volume of the shape.  *vol_index* gives 
     424    the list of volume parameters 
     425 
     426    *cutoff* ignores the corners of the dispersion hypercube 
     427 
     428    *scale*, *background* multiplies the resulting form and adds an offset 
     429 
     430    *args* is the prepopulated set of arguments to the form function, starting 
     431    with the q vectors, and including slots for all the parameters.  The 
     432    values for the parameters will be substituted with values from the 
     433    dispersion functions. 
     434 
     435    *pd* is the list of dispersion parameters 
     436 
     437    *pd_index* are the indices of the dispersion parameters in *args* 
     438 
     439    *vol_index* are the indices of the volume parameters in *args* 
     440 
     441    *theta_index* is the index of the theta parameter for the sasview 
     442    spherical correction, or -1 if there is no angular dispersion 
     443    """ 
     444 
     445    ################################################################ 
     446    #                                                              # 
     447    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   # 
     448    #   !!                                                    !!   # 
     449    #   !!  KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C  !!   # 
     450    #   !!                                                    !!   # 
     451    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   # 
     452    #                                                              # 
     453    ################################################################ 
     454 
     455    weight = np.empty(len(pd), 'd') 
     456    if weight.size > 0: 
     457        # weight vector, to be populated by polydispersity loops 
     458 
     459        # identify which pd parameters are volume parameters 
     460        vol_weight_index = np.array([(index in vol_index) for index in pd_index]) 
     461 
     462        # Sort parameters in decreasing order of pd length 
     463        Npd = np.array([len(pdi[0]) for pdi in pd], 'i') 
     464        order = np.argsort(Npd)[::-1] 
     465        stride = np.cumprod(Npd[order]) 
     466        pd = [pd[index] for index in order] 
     467        pd_index = pd_index[order] 
     468        vol_weight_index = vol_weight_index[order] 
     469 
     470        fast_value = pd[0][0] 
     471        fast_weight = pd[0][1] 
     472    else: 
     473        stride = np.array([1]) 
     474        vol_weight_index = slice(None, None) 
     475        # keep lint happy 
     476        fast_value = [None] 
     477        fast_weight = [None] 
     478 
     479    ret = np.zeros_like(args[0]) 
     480    norm = np.zeros_like(ret) 
     481    vol = np.zeros_like(ret) 
     482    vol_norm = np.zeros_like(ret) 
     483    for k in range(stride[-1]): 
     484        # update polydispersity parameter values 
     485        fast_index = k % stride[0] 
     486        if fast_index == 0:  # bottom loop complete ... check all other loops 
     487            if weight.size > 0: 
     488                for i, index, in enumerate(k % stride): 
     489                    args[pd_index[i]] = pd[i][0][index] 
     490                    weight[i] = pd[i][1][index] 
     491        else: 
     492            args[pd_index[0]] = fast_value[fast_index] 
     493            weight[0] = fast_weight[fast_index] 
     494 
     495        # Computes the weight, and if it is not sufficient then ignore this 
     496        # parameter set. 
     497        # Note: could precompute w1*...*wn so we only need to multiply by w0 
     498        w = np.prod(weight) 
     499        if w > cutoff: 
     500            # Note: can precompute spherical correction if theta_index is not 
     501            # the fast index. Correction factor for spherical integration 
     502            #spherical_correction = abs(cos(pi*args[phi_index])) if phi_index>=0 else 1.0 
     503            spherical_correction = (abs(cos(pi * args[theta_index])) * pi / 2 
     504                                    if theta_index >= 0 else 1.0) 
     505            #spherical_correction = 1.0 
     506 
     507            # Call the scattering function and adds it to the total. 
     508            I = form(*args) 
     509            if np.isnan(I).any(): continue 
     510            ret += w * I * spherical_correction 
     511            norm += w 
     512 
     513            # Volume normalization. 
     514            # If there are "volume" polydispersity parameters, then these 
     515            # will be used to call the form_volume function from the user 
     516            # supplied kernel, and accumulate a normalized weight. 
     517            # Note: can precompute volume norm if fast index is not a volume 
     518            if form_volume: 
     519                vol_args = [args[index] for index in vol_index] 
     520                vol_weight = np.prod(weight[vol_weight_index]) 
     521                vol += vol_weight * form_volume(*vol_args) 
     522                vol_norm += vol_weight 
     523 
     524    positive = (vol * vol_norm != 0.0) 
     525    ret[positive] *= vol_norm[positive] / vol[positive] 
     526    result = scale * ret / norm + background 
     527    return result 
Note: See TracChangeset for help on using the changeset viewer.