Changes in / [31d22de:d5ac45f] in sasmodels
- Location:
- sasmodels
- Files:
-
- 2 deleted
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/kernelpy.py
rd5ac45f rd5ac45f 128 128 129 129 def __call__(self, fixed, pd, cutoff=1e-5): 130 #print("fixed",fixed)131 #print("pd", pd)130 print("fixed",fixed) 131 print("pd", pd) 132 132 args = self.args[:] # grab a copy of the args 133 133 form, form_volume = self.kernel, self.info['form_volume'] … … 187 187 ################################################################ 188 188 189 #TODO: Wojtek's notes 190 #TODO: The goal is to restructure polydispersity loop 191 #so it allows fitting arbitrary polydispersity parameters 192 #and it accepts cases like coupled parameters 189 193 weight = np.empty(len(pd), 'd') 190 194 if weight.size > 0: … … 260 264 result = scale * ret / norm + background 261 265 return result 266 267 """ 268 Python driver for python kernels 269 270 Calls the kernel with a vector of $q$ values for a single parameter set. 271 Polydispersity is supported by looping over different parameter sets and 272 summing the results. The interface to :class:`PyModel` matches those for 273 :class:`kernelcl.GpuModel` and :class:`kerneldll.DllModel`. 274 """ 275 import numpy as np 276 from numpy import pi, cos 277 278 from .generate import F64 279 280 class PyModel(object): 281 """ 282 Wrapper for pure python models. 283 """ 284 def __init__(self, model_info): 285 self.info = model_info 286 287 def __call__(self, q_vectors): 288 q_input = PyInput(q_vectors, dtype=F64) 289 kernel = self.info['Iqxy'] if q_input.is_2d else self.info['Iq'] 290 return PyKernel(kernel, self.info, q_input) 291 292 def release(self): 293 """ 294 Free resources associated with the model. 295 """ 296 pass 297 298 class PyInput(object): 299 """ 300 Make q data available to the gpu. 301 302 *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, 303 and *[qx, qy]* for 2-D data. Internally, the vectors will be reallocated 304 to get the best performance on OpenCL, which may involve shifting and 305 stretching the array to better match the memory architecture. Additional 306 points will be evaluated with *q=1e-3*. 307 308 *dtype* is the data type for the q vectors. The data type should be 309 set to match that of the kernel, which is an attribute of 310 :class:`GpuProgram`. Note that not all kernels support double 311 precision, so even if the program was created for double precision, 312 the *GpuProgram.dtype* may be single precision. 313 314 Call :meth:`release` when complete. Even if not called directly, the 315 buffer will be released when the data object is freed. 316 """ 317 def __init__(self, q_vectors, dtype): 318 self.nq = q_vectors[0].size 319 self.dtype = dtype 320 self.is_2d = (len(q_vectors) == 2) 321 self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] 322 self.q_pointers = [q.ctypes.data for q in self.q_vectors] 323 324 def release(self): 325 """ 326 Free resources associated with the model inputs. 327 """ 328 self.q_vectors = [] 329 330 class PyKernel(object): 331 """ 332 Callable SAS kernel. 333 334 *kernel* is the DllKernel object to call. 335 336 *model_info* is the module information 337 338 *q_input* is the DllInput q vectors at which the kernel should be 339 evaluated. 340 341 The resulting call method takes the *pars*, a list of values for 342 the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) 343 vectors for the polydisperse parameters. *cutoff* determines the 344 integration limits: any points with combined weight less than *cutoff* 345 will not be calculated. 346 347 Call :meth:`release` when done with the kernel instance. 348 """ 349 def __init__(self, kernel, model_info, q_input): 350 self.info = model_info 351 self.q_input = q_input 352 self.res = np.empty(q_input.nq, q_input.dtype) 353 dim = '2d' if q_input.is_2d else '1d' 354 # Loop over q unless user promises that the kernel is vectorized by 355 # taggining it with vectorized=True 356 if not getattr(kernel, 'vectorized', False): 357 if dim == '2d': 358 def vector_kernel(qx, qy, *args): 359 """ 360 Vectorized 2D kernel. 361 """ 362 return np.array([kernel(qxi, qyi, *args) 363 for qxi, qyi in zip(qx, qy)]) 364 else: 365 def vector_kernel(q, *args): 366 """ 367 Vectorized 1D kernel. 368 """ 369 return np.array([kernel(qi, *args) 370 for qi in q]) 371 self.kernel = vector_kernel 372 else: 373 self.kernel = kernel 374 fixed_pars = model_info['partype']['fixed-' + dim] 375 pd_pars = model_info['partype']['pd-' + dim] 376 vol_pars = model_info['partype']['volume'] 377 378 # First two fixed pars are scale and background 379 pars = [p.name for p in model_info['parameters'][2:]] 380 offset = len(self.q_input.q_vectors) 381 self.args = self.q_input.q_vectors + [None] * len(pars) 382 self.fixed_index = np.array([pars.index(p) + offset 383 for p in fixed_pars[2:]]) 384 self.pd_index = np.array([pars.index(p) + offset 385 for p in pd_pars]) 386 self.vol_index = np.array([pars.index(p) + offset 387 for p in vol_pars]) 388 try: self.theta_index = pars.index('theta') + offset 389 except ValueError: self.theta_index = -1 390 391 # Caller needs fixed_pars and pd_pars 392 self.fixed_pars = fixed_pars 393 self.pd_pars = pd_pars 394 395 def __call__(self, fixed, pd, cutoff=1e-5): 396 #print("fixed",fixed) 397 #print("pd", pd) 398 args = self.args[:] # grab a copy of the args 399 form, form_volume = self.kernel, self.info['form_volume'] 400 # First two fixed 401 scale, background = fixed[:2] 402 for index, value in zip(self.fixed_index, fixed[2:]): 403 args[index] = float(value) 404 res = _loops(form, form_volume, cutoff, scale, background, args, 405 pd, self.pd_index, self.vol_index, self.theta_index) 406 407 return res 408 409 def release(self): 410 """ 411 Free resources associated with the kernel. 412 """ 413 self.q_input = None 414 415 def _loops(form, form_volume, cutoff, scale, background, 416 args, pd, pd_index, vol_index, theta_index): 417 """ 418 *form* is the name of the form function, which should be vectorized over 419 q, but otherwise have an interface like the opencl kernels, with the 420 q parameters first followed by the individual parameters in the order 421 given in model.parameters (see :mod:`sasmodels.generate`). 422 423 *form_volume* calculates the volume of the shape. *vol_index* gives 424 the list of volume parameters 425 426 *cutoff* ignores the corners of the dispersion hypercube 427 428 *scale*, *background* multiplies the resulting form and adds an offset 429 430 *args* is the prepopulated set of arguments to the form function, starting 431 with the q vectors, and including slots for all the parameters. The 432 values for the parameters will be substituted with values from the 433 dispersion functions. 434 435 *pd* is the list of dispersion parameters 436 437 *pd_index* are the indices of the dispersion parameters in *args* 438 439 *vol_index* are the indices of the volume parameters in *args* 440 441 *theta_index* is the index of the theta parameter for the sasview 442 spherical correction, or -1 if there is no angular dispersion 443 """ 444 445 ################################################################ 446 # # 447 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # 448 # !! !! # 449 # !! KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C !! # 450 # !! !! # 451 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # 452 # # 453 ################################################################ 454 455 weight = np.empty(len(pd), 'd') 456 if weight.size > 0: 457 # weight vector, to be populated by polydispersity loops 458 459 # identify which pd parameters are volume parameters 460 vol_weight_index = np.array([(index in vol_index) for index in pd_index]) 461 462 # Sort parameters in decreasing order of pd length 463 Npd = np.array([len(pdi[0]) for pdi in pd], 'i') 464 order = np.argsort(Npd)[::-1] 465 stride = np.cumprod(Npd[order]) 466 pd = [pd[index] for index in order] 467 pd_index = pd_index[order] 468 vol_weight_index = vol_weight_index[order] 469 470 fast_value = pd[0][0] 471 fast_weight = pd[0][1] 472 else: 473 stride = np.array([1]) 474 vol_weight_index = slice(None, None) 475 # keep lint happy 476 fast_value = [None] 477 fast_weight = [None] 478 479 ret = np.zeros_like(args[0]) 480 norm = np.zeros_like(ret) 481 vol = np.zeros_like(ret) 482 vol_norm = np.zeros_like(ret) 483 for k in range(stride[-1]): 484 # update polydispersity parameter values 485 fast_index = k % stride[0] 486 if fast_index == 0: # bottom loop complete ... check all other loops 487 if weight.size > 0: 488 for i, index, in enumerate(k % stride): 489 args[pd_index[i]] = pd[i][0][index] 490 weight[i] = pd[i][1][index] 491 else: 492 args[pd_index[0]] = fast_value[fast_index] 493 weight[0] = fast_weight[fast_index] 494 495 # Computes the weight, and if it is not sufficient then ignore this 496 # parameter set. 497 # Note: could precompute w1*...*wn so we only need to multiply by w0 498 w = np.prod(weight) 499 if w > cutoff: 500 # Note: can precompute spherical correction if theta_index is not 501 # the fast index. Correction factor for spherical integration 502 #spherical_correction = abs(cos(pi*args[phi_index])) if phi_index>=0 else 1.0 503 spherical_correction = (abs(cos(pi * args[theta_index])) * pi / 2 504 if theta_index >= 0 else 1.0) 505 #spherical_correction = 1.0 506 507 # Call the scattering function and adds it to the total. 508 I = form(*args) 509 if np.isnan(I).any(): continue 510 ret += w * I * spherical_correction 511 norm += w 512 513 # Volume normalization. 514 # If there are "volume" polydispersity parameters, then these 515 # will be used to call the form_volume function from the user 516 # supplied kernel, and accumulate a normalized weight. 517 # Note: can precompute volume norm if fast index is not a volume 518 if form_volume: 519 vol_args = [args[index] for index in vol_index] 520 vol_weight = np.prod(weight[vol_weight_index]) 521 vol += vol_weight * form_volume(*vol_args) 522 vol_norm += vol_weight 523 524 positive = (vol * vol_norm != 0.0) 525 ret[positive] *= vol_norm[positive] / vol[positive] 526 result = scale * ret / norm + background 527 return result
Note: See TracChangeset
for help on using the changeset viewer.