Changeset ccc7192 in sasview for src/sas/sascalc/dataloader
- Timestamp:
- Apr 6, 2017 1:17:21 PM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- fa4af76
- Parents:
- 9dda8cc
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/dataloader/manipulations.py
r9dda8cc rccc7192 72 72 return phi_out 73 73 74 75 def reader2D_converter(data2d=None):76 """77 convert old 2d format opened by IhorReader or danse_reader78 to new Data2D format79 80 :param data2d: 2d array of Data2D object81 :return: 1d arrays of Data2D object82 83 """84 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None:85 raise ValueError("Can't convert this data: data=None...")86 new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1))87 new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1))88 new_y = new_y.swapaxes(0, 1)89 90 new_data = data2d.data.flatten()91 qx_data = new_x.flatten()92 qy_data = new_y.flatten()93 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data)94 if data2d.err_data is None or np.any(data2d.err_data <= 0):95 new_err_data = np.sqrt(np.abs(new_data))96 else:97 new_err_data = data2d.err_data.flatten()98 mask = np.ones(len(new_data), dtype=bool)99 100 # TODO: make sense of the following two lines...101 #from sas.sascalc.dataloader.data_info import Data2D102 #output = Data2D()103 output = data2d104 output.data = new_data105 output.err_data = new_err_data106 output.qx_data = qx_data107 output.qy_data = qy_data108 output.q_data = q_data109 output.mask = mask110 111 return output112 113 114 class _Slab(object):115 """116 Compute average I(Q) for a region of interest117 """118 119 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0,120 y_max=0.0, bin_width=0.001):121 # Minimum Qx value [A-1]122 self.x_min = x_min123 # Maximum Qx value [A-1]124 self.x_max = x_max125 # Minimum Qy value [A-1]126 self.y_min = y_min127 # Maximum Qy value [A-1]128 self.y_max = y_max129 # Bin width (step size) [A-1]130 self.bin_width = bin_width131 # If True, I(|Q|) will be return, otherwise,132 # negative q-values are allowed133 self.fold = False134 135 def __call__(self, data2D):136 return NotImplemented137 138 def _avg(self, data2D, maj):139 """140 Compute average I(Q_maj) for a region of interest.141 The major axis is defined as the axis of Q_maj.142 The minor axis is the axis that we average over.143 144 :param data2D: Data2D object145 :param maj_min: min value on the major axis146 :return: Data1D object147 """148 if len(data2D.detector) > 1:149 msg = "_Slab._avg: invalid number of "150 msg += " detectors: %g" % len(data2D.detector)151 raise RuntimeError(msg)152 153 # Get data154 data = data2D.data[np.isfinite(data2D.data)]155 err_data = data2D.err_data[np.isfinite(data2D.data)]156 qx_data = data2D.qx_data[np.isfinite(data2D.data)]157 qy_data = data2D.qy_data[np.isfinite(data2D.data)]158 159 # Build array of Q intervals160 if maj == 'x':161 if self.fold:162 x_min = 0163 else:164 x_min = self.x_min165 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width))166 elif maj == 'y':167 if self.fold:168 y_min = 0169 else:170 y_min = self.y_min171 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width))172 else:173 raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj))174 175 x = np.zeros(nbins)176 y = np.zeros(nbins)177 err_y = np.zeros(nbins)178 y_counts = np.zeros(nbins)179 180 # Average pixelsize in q space181 for npts in range(len(data)):182 # default frac183 frac_x = 0184 frac_y = 0185 # get ROI186 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]:187 frac_x = 1188 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]:189 frac_y = 1190 frac = frac_x * frac_y191 192 if frac == 0:193 continue194 # binning: find axis of q195 if maj == 'x':196 q_value = qx_data[npts]197 min_value = x_min198 if maj == 'y':199 q_value = qy_data[npts]200 min_value = y_min201 if self.fold and q_value < 0:202 q_value = -q_value203 # bin204 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1205 206 # skip outside of max bins207 if i_q < 0 or i_q >= nbins:208 continue209 210 # TODO: find better definition of x[i_q] based on q_data211 # min_value + (i_q + 1) * self.bin_width / 2.0212 x[i_q] += frac * q_value213 y[i_q] += frac * data[npts]214 215 if err_data is None or err_data[npts] == 0.0:216 if data[npts] < 0:217 data[npts] = -data[npts]218 err_y[i_q] += frac * frac * data[npts]219 else:220 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts]221 y_counts[i_q] += frac222 223 # Average the sums224 for n in range(nbins):225 err_y[n] = math.sqrt(err_y[n])226 227 err_y = err_y / y_counts228 y = y / y_counts229 x = x / y_counts230 idx = (np.isfinite(y) & np.isfinite(x))231 232 if not idx.any():233 msg = "Average Error: No points inside ROI to average..."234 raise ValueError(msg)235 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx])236 237 238 class SlabY(_Slab):239 """240 Compute average I(Qy) for a region of interest241 """242 243 def __call__(self, data2D):244 """245 Compute average I(Qy) for a region of interest246 247 :param data2D: Data2D object248 :return: Data1D object249 """250 return self._avg(data2D, 'y')251 252 253 class SlabX(_Slab):254 """255 Compute average I(Qx) for a region of interest256 """257 258 def __call__(self, data2D):259 """260 Compute average I(Qx) for a region of interest261 :param data2D: Data2D object262 :return: Data1D object263 """264 return self._avg(data2D, 'x')265 266 267 class Boxsum(object):268 """269 Perform the sum of counts in a 2D region of interest.270 """271 272 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):273 # Minimum Qx value [A-1]274 self.x_min = x_min275 # Maximum Qx value [A-1]276 self.x_max = x_max277 # Minimum Qy value [A-1]278 self.y_min = y_min279 # Maximum Qy value [A-1]280 self.y_max = y_max281 282 def __call__(self, data2D):283 """284 Perform the sum in the region of interest285 286 :param data2D: Data2D object287 :return: number of counts, error on number of counts,288 number of points summed289 """290 y, err_y, y_counts = self._sum(data2D)291 292 # Average the sums293 counts = 0 if y_counts == 0 else y294 error = 0 if y_counts == 0 else math.sqrt(err_y)295 296 # Added y_counts to return, SMK & PDB, 04/03/2013297 return counts, error, y_counts298 299 def _sum(self, data2D):300 """301 Perform the sum in the region of interest302 303 :param data2D: Data2D object304 :return: number of counts,305 error on number of counts, number of entries summed306 """307 if len(data2D.detector) > 1:308 msg = "Circular averaging: invalid number "309 msg += "of detectors: %g" % len(data2D.detector)310 raise RuntimeError(msg)311 # Get data312 data = data2D.data[np.isfinite(data2D.data)]313 err_data = data2D.err_data[np.isfinite(data2D.data)]314 qx_data = data2D.qx_data[np.isfinite(data2D.data)]315 qy_data = data2D.qy_data[np.isfinite(data2D.data)]316 317 y = 0.0318 err_y = 0.0319 y_counts = 0.0320 321 # Average pixelsize in q space322 for npts in range(len(data)):323 # default frac324 frac_x = 0325 frac_y = 0326 327 # get min and max at each points328 qx = qx_data[npts]329 qy = qy_data[npts]330 331 # get the ROI332 if self.x_min <= qx and self.x_max > qx:333 frac_x = 1334 if self.y_min <= qy and self.y_max > qy:335 frac_y = 1336 # Find the fraction along each directions337 frac = frac_x * frac_y338 if frac == 0:339 continue340 y += frac * data[npts]341 if err_data is None or err_data[npts] == 0.0:342 if data[npts] < 0:343 data[npts] = -data[npts]344 err_y += frac * frac * data[npts]345 else:346 err_y += frac * frac * err_data[npts] * err_data[npts]347 y_counts += frac348 return y, err_y, y_counts349 350 351 class Boxavg(Boxsum):352 """353 Perform the average of counts in a 2D region of interest.354 """355 356 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):357 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max,358 y_min=y_min, y_max=y_max)359 360 def __call__(self, data2D):361 """362 Perform the sum in the region of interest363 364 :param data2D: Data2D object365 :return: average counts, error on average counts366 367 """368 y, err_y, y_counts = self._sum(data2D)369 370 # Average the sums371 counts = 0 if y_counts == 0 else y / y_counts372 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts373 374 return counts, error375 376 377 74 def get_pixel_fraction_square(x, xmin, xmax): 378 75 """ … … 397 94 return 1.0 398 95 399 400 class CircularAverage(object): 401 """ 402 Perform circular averaging on 2D data 403 404 The data returned is the distribution of counts 405 as a function of Q 406 """ 407 408 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 409 # Minimum radius included in the average [A-1] 410 self.r_min = r_min 411 # Maximum radius included in the average [A-1] 412 self.r_max = r_max 413 # Bin width (step size) [A-1] 414 self.bin_width = bin_width 415 416 def __call__(self, data2D, ismask=False): 417 """ 418 Perform circular averaging on the data 419 420 :param data2D: Data2D object 421 :return: Data1D object 422 """ 423 # Get data W/ finite values 424 data = data2D.data[np.isfinite(data2D.data)] 425 q_data = data2D.q_data[np.isfinite(data2D.data)] 426 err_data = data2D.err_data[np.isfinite(data2D.data)] 427 mask_data = data2D.mask[np.isfinite(data2D.data)] 428 429 dq_data = None 430 431 # Get the dq for resolution averaging 432 if data2D.dqx_data != None and data2D.dqy_data != None: 433 # The pinholes and det. pix contribution present 434 # in both direction of the 2D which must be subtracted when 435 # converting to 1D: dq_overlap should calculated ideally at 436 # q = 0. Note This method works on only pinhole geometry. 437 # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 438 z_max = max(data2D.q_data) 439 z_min = min(data2D.q_data) 440 x_max = data2D.dqx_data[data2D.q_data[z_max]] 441 x_min = data2D.dqx_data[data2D.q_data[z_min]] 442 y_max = data2D.dqy_data[data2D.q_data[z_max]] 443 y_min = data2D.dqy_data[data2D.q_data[z_min]] 444 # Find qdx at q = 0 445 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 446 # when extrapolation goes wrong 447 if dq_overlap_x > min(data2D.dqx_data): 448 dq_overlap_x = min(data2D.dqx_data) 449 dq_overlap_x *= dq_overlap_x 450 # Find qdx at q = 0 451 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 452 # when extrapolation goes wrong 453 if dq_overlap_y > min(data2D.dqy_data): 454 dq_overlap_y = min(data2D.dqy_data) 455 # get dq at q=0. 456 dq_overlap_y *= dq_overlap_y 457 458 dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 459 # Final protection of dq 460 if dq_overlap < 0: 461 dq_overlap = y_min 462 dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] 463 dqy_data = data2D.dqy_data[np.isfinite( 464 data2D.data)] - dq_overlap 465 # def; dqx_data = dq_r dqy_data = dq_phi 466 # Convert dq 2D to 1D here 467 dqx = dqx_data * dqx_data 468 dqy = dqy_data * dqy_data 469 dq_data = np.add(dqx, dqy) 470 dq_data = np.sqrt(dq_data) 471 472 #q_data_max = np.max(q_data) 473 if len(data2D.q_data) == None: 474 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 475 raise RuntimeError(msg) 476 477 # Build array of Q intervals 478 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 479 480 x = np.zeros(nbins) 481 y = np.zeros(nbins) 482 err_y = np.zeros(nbins) 483 err_x = np.zeros(nbins) 484 y_counts = np.zeros(nbins) 485 486 for npt in range(len(data)): 487 488 if ismask and not mask_data[npt]: 489 continue 490 491 frac = 0 492 493 # q-value at the pixel (j,i) 494 q_value = q_data[npt] 495 data_n = data[npt] 496 497 # No need to calculate the frac when all data are within range 498 if self.r_min >= self.r_max: 499 raise ValueError("Limit Error: min > max") 500 501 if self.r_min <= q_value and q_value <= self.r_max: 502 frac = 1 503 if frac == 0: 504 continue 505 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 506 507 # Take care of the edge case at phi = 2pi. 508 if i_q == nbins: 509 i_q = nbins - 1 510 y[i_q] += frac * data_n 511 # Take dqs from data to get the q_average 512 x[i_q] += frac * q_value 513 if err_data is None or err_data[npt] == 0.0: 514 if data_n < 0: 515 data_n = -data_n 516 err_y[i_q] += frac * frac * data_n 517 else: 518 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 519 if dq_data != None: 520 # To be consistent with dq calculation in 1d reduction, 521 # we need just the averages (not quadratures) because 522 # it should not depend on the number of the q points 523 # in the qr bins. 524 err_x[i_q] += frac * dq_data[npt] 525 else: 526 err_x = None 527 y_counts[i_q] += frac 528 529 # Average the sums 530 for n in range(nbins): 531 if err_y[n] < 0: 532 err_y[n] = -err_y[n] 533 err_y[n] = math.sqrt(err_y[n]) 534 # if err_x != None: 535 # err_x[n] = math.sqrt(err_x[n]) 536 537 err_y = err_y / y_counts 538 err_y[err_y == 0] = np.average(err_y) 539 y = y / y_counts 540 x = x / y_counts 541 idx = (np.isfinite(y)) & (np.isfinite(x)) 542 543 if err_x != None: 544 d_x = err_x[idx] / y_counts[idx] 545 else: 546 d_x = None 547 548 if not idx.any(): 549 msg = "Average Error: No points inside ROI to average..." 550 raise ValueError(msg) 551 552 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 553 554 555 class Ring(object): 556 """ 557 Defines a ring on a 2D data set. 558 The ring is defined by r_min, r_max, and 559 the position of the center of the ring. 560 561 The data returned is the distribution of counts 562 around the ring as a function of phi. 563 564 Phi_min and phi_max should be defined between 0 and 2*pi 565 in anti-clockwise starting from the x- axis on the left-hand side 566 """ 567 # Todo: remove center. 568 569 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 570 # Minimum radius 571 self.r_min = r_min 572 # Maximum radius 573 self.r_max = r_max 574 # Center of the ring in x 575 self.center_x = center_x 576 # Center of the ring in y 577 self.center_y = center_y 578 # Number of angular bins 579 self.nbins_phi = nbins 580 581 def __call__(self, data2D): 582 """ 583 Apply the ring to the data set. 584 Returns the angular distribution for a given q range 585 586 :param data2D: Data2D object 587 588 :return: Data1D object 589 """ 590 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 591 raise RuntimeError("Ring averaging only take plottable_2D objects") 592 593 Pi = math.pi 594 595 # Get data 596 data = data2D.data[np.isfinite(data2D.data)] 597 q_data = data2D.q_data[np.isfinite(data2D.data)] 598 err_data = data2D.err_data[np.isfinite(data2D.data)] 599 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 600 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 601 602 # Set space for 1d outputs 603 phi_bins = np.zeros(self.nbins_phi) 604 phi_counts = np.zeros(self.nbins_phi) 605 phi_values = np.zeros(self.nbins_phi) 606 phi_err = np.zeros(self.nbins_phi) 607 608 # Shift to apply to calculated phi values in order 609 # to center first bin at zero 610 phi_shift = Pi / self.nbins_phi 611 612 for npt in range(len(data)): 613 frac = 0 614 # q-value at the point (npt) 615 q_value = q_data[npt] 616 data_n = data[npt] 617 618 # phi-value at the point (npt) 619 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 620 621 if self.r_min <= q_value and q_value <= self.r_max: 622 frac = 1 623 if frac == 0: 624 continue 625 # binning 626 i_phi = int(math.floor((self.nbins_phi) * 627 (phi_value + phi_shift) / (2 * Pi))) 628 629 # Take care of the edge case at phi = 2pi. 630 if i_phi >= self.nbins_phi: 631 i_phi = 0 632 phi_bins[i_phi] += frac * data[npt] 633 634 if err_data is None or err_data[npt] == 0.0: 635 if data_n < 0: 636 data_n = -data_n 637 phi_err[i_phi] += frac * frac * math.fabs(data_n) 638 else: 639 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 640 phi_counts[i_phi] += frac 641 642 for i in range(self.nbins_phi): 643 phi_bins[i] = phi_bins[i] / phi_counts[i] 644 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 645 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 646 647 idx = (np.isfinite(phi_bins)) 648 649 if not idx.any(): 650 msg = "Average Error: No points inside ROI to average..." 651 raise ValueError(msg) 652 # elif len(phi_bins[idx])!= self.nbins_phi: 653 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 654 #,"empty bin(s) due to tight binning..." 655 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 656 96 def get_intercept(q, q_0, q_1): 97 """ 98 Returns the fraction of the side at which the 99 q-value intercept the pixel, None otherwise. 100 The values returned is the fraction ON THE SIDE 101 OF THE LOWEST Q. :: 102 103 A B 104 +-----------+--------+ <--- pixel size 105 0 1 106 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 107 if Q_1 > Q_0, A is returned 108 if Q_1 < Q_0, B is returned 109 if Q is outside the range of [Q_0, Q_1], None is returned 110 111 """ 112 if q_1 > q_0: 113 if q > q_0 and q <= q_1: 114 return (q - q_0) / (q_1 - q_0) 115 else: 116 if q > q_1 and q <= q_0: 117 return (q - q_1) / (q_0 - q_1) 118 return None 657 119 658 120 def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): … … 719 181 return frac_max 720 182 721 722 def get_intercept(q, q_0, q_1): 723 """ 724 Returns the fraction of the side at which the 725 q-value intercept the pixel, None otherwise. 726 The values returned is the fraction ON THE SIDE 727 OF THE LOWEST Q. :: 728 729 A B 730 +-----------+--------+ <--- pixel size 731 0 1 732 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 733 if Q_1 > Q_0, A is returned 734 if Q_1 < Q_0, B is returned 735 if Q is outside the range of [Q_0, Q_1], None is returned 736 737 """ 738 if q_1 > q_0: 739 if q > q_0 and q <= q_1: 740 return (q - q_0) / (q_1 - q_0) 183 def get_dq_data(data2D): 184 ''' 185 Get the dq for resolution averaging 186 The pinholes and det. pix contribution present 187 in both direction of the 2D which must be subtracted when 188 converting to 1D: dq_overlap should calculated ideally at 189 q = 0. Note This method works on only pinhole geometry. 190 Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 191 ''' 192 z_max = max(data2D.q_data) 193 z_min = min(data2D.q_data) 194 x_max = data2D.dqx_data[data2D.q_data[z_max]] 195 x_min = data2D.dqx_data[data2D.q_data[z_min]] 196 y_max = data2D.dqy_data[data2D.q_data[z_max]] 197 y_min = data2D.dqy_data[data2D.q_data[z_min]] 198 # Find qdx at q = 0 199 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 200 # when extrapolation goes wrong 201 if dq_overlap_x > min(data2D.dqx_data): 202 dq_overlap_x = min(data2D.dqx_data) 203 dq_overlap_x *= dq_overlap_x 204 # Find qdx at q = 0 205 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 206 # when extrapolation goes wrong 207 if dq_overlap_y > min(data2D.dqy_data): 208 dq_overlap_y = min(data2D.dqy_data) 209 # get dq at q=0. 210 dq_overlap_y *= dq_overlap_y 211 212 dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 213 # Final protection of dq 214 if dq_overlap < 0: 215 dq_overlap = y_min 216 dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] 217 dqy_data = data2D.dqy_data[np.isfinite( 218 data2D.data)] - dq_overlap 219 # def; dqx_data = dq_r dqy_data = dq_phi 220 # Convert dq 2D to 1D here 221 dq_data = np.sqrt(dqx_data**2 + dqx_data**2) 222 return dq_data 223 224 ################################################################################ 225 226 def reader2D_converter(data2d=None): 227 """ 228 convert old 2d format opened by IhorReader or danse_reader 229 to new Data2D format 230 This is mainly used by the Readers 231 232 :param data2d: 2d array of Data2D object 233 :return: 1d arrays of Data2D object 234 235 """ 236 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: 237 raise ValueError("Can't convert this data: data=None...") 238 new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1)) 239 new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1)) 240 new_y = new_y.swapaxes(0, 1) 241 242 new_data = data2d.data.flatten() 243 qx_data = new_x.flatten() 244 qy_data = new_y.flatten() 245 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 246 if data2d.err_data is None or np.any(data2d.err_data <= 0): 247 new_err_data = np.sqrt(np.abs(new_data)) 741 248 else: 742 if q > q_1 and q <= q_0: 743 return (q - q_1) / (q_0 - q_1) 744 return None 745 249 new_err_data = data2d.err_data.flatten() 250 mask = np.ones(len(new_data), dtype=bool) 251 252 # TODO: make sense of the following two lines... 253 #from sas.sascalc.dataloader.data_info import Data2D 254 #output = Data2D() 255 output = data2d 256 output.data = new_data 257 output.err_data = new_err_data 258 output.qx_data = qx_data 259 output.qy_data = qy_data 260 output.q_data = q_data 261 output.mask = mask 262 263 return output 264 265 ################################################################################ 266 267 class _Slab(object): 268 """ 269 Compute average I(Q) for a region of interest 270 """ 271 272 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, 273 y_max=0.0, bin_width=0.001): 274 # Minimum Qx value [A-1] 275 self.x_min = x_min 276 # Maximum Qx value [A-1] 277 self.x_max = x_max 278 # Minimum Qy value [A-1] 279 self.y_min = y_min 280 # Maximum Qy value [A-1] 281 self.y_max = y_max 282 # Bin width (step size) [A-1] 283 self.bin_width = bin_width 284 # If True, I(|Q|) will be return, otherwise, 285 # negative q-values are allowed 286 self.fold = False 287 288 def __call__(self, data2D): 289 return NotImplemented 290 291 def _avg(self, data2D, maj): 292 """ 293 Compute average I(Q_maj) for a region of interest. 294 The major axis is defined as the axis of Q_maj. 295 The minor axis is the axis that we average over. 296 297 :param data2D: Data2D object 298 :param maj_min: min value on the major axis 299 :return: Data1D object 300 """ 301 if len(data2D.detector) > 1: 302 msg = "_Slab._avg: invalid number of " 303 msg += " detectors: %g" % len(data2D.detector) 304 raise RuntimeError(msg) 305 306 # Get data 307 data = data2D.data[np.isfinite(data2D.data)] 308 err_data = data2D.err_data[np.isfinite(data2D.data)] 309 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 310 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 311 312 # Build array of Q intervals 313 if maj == 'x': 314 if self.fold: 315 x_min = 0 316 else: 317 x_min = self.x_min 318 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) 319 elif maj == 'y': 320 if self.fold: 321 y_min = 0 322 else: 323 y_min = self.y_min 324 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) 325 else: 326 raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj)) 327 328 x = np.zeros(nbins) 329 y = np.zeros(nbins) 330 err_y = np.zeros(nbins) 331 y_counts = np.zeros(nbins) 332 333 # Average pixelsize in q space 334 for npts in range(len(data)): 335 # default frac 336 frac_x = 0 337 frac_y = 0 338 # get ROI 339 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: 340 frac_x = 1 341 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: 342 frac_y = 1 343 frac = frac_x * frac_y 344 345 if frac == 0: 346 continue 347 # binning: find axis of q 348 if maj == 'x': 349 q_value = qx_data[npts] 350 min_value = x_min 351 if maj == 'y': 352 q_value = qy_data[npts] 353 min_value = y_min 354 if self.fold and q_value < 0: 355 q_value = -q_value 356 # bin 357 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 358 359 # skip outside of max bins 360 if i_q < 0 or i_q >= nbins: 361 continue 362 363 # TODO: find better definition of x[i_q] based on q_data 364 # min_value + (i_q + 1) * self.bin_width / 2.0 365 x[i_q] += frac * q_value 366 y[i_q] += frac * data[npts] 367 368 if err_data is None or err_data[npts] == 0.0: 369 if data[npts] < 0: 370 data[npts] = -data[npts] 371 err_y[i_q] += frac * frac * data[npts] 372 else: 373 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] 374 y_counts[i_q] += frac 375 376 # Average the sums 377 for n in range(nbins): 378 err_y[n] = math.sqrt(err_y[n]) 379 380 err_y = err_y / y_counts 381 y = y / y_counts 382 x = x / y_counts 383 idx = (np.isfinite(y) & np.isfinite(x)) 384 385 if not idx.any(): 386 msg = "Average Error: No points inside ROI to average..." 387 raise ValueError(msg) 388 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) 389 390 391 class SlabY(_Slab): 392 """ 393 Compute average I(Qy) for a region of interest 394 """ 395 396 def __call__(self, data2D): 397 """ 398 Compute average I(Qy) for a region of interest 399 400 :param data2D: Data2D object 401 :return: Data1D object 402 """ 403 return self._avg(data2D, 'y') 404 405 406 class SlabX(_Slab): 407 """ 408 Compute average I(Qx) for a region of interest 409 """ 410 411 def __call__(self, data2D): 412 """ 413 Compute average I(Qx) for a region of interest 414 :param data2D: Data2D object 415 :return: Data1D object 416 """ 417 return self._avg(data2D, 'x') 418 419 ################################################################################ 420 421 class Boxsum(object): 422 """ 423 Perform the sum of counts in a 2D region of interest. 424 """ 425 426 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 427 # Minimum Qx value [A-1] 428 self.x_min = x_min 429 # Maximum Qx value [A-1] 430 self.x_max = x_max 431 # Minimum Qy value [A-1] 432 self.y_min = y_min 433 # Maximum Qy value [A-1] 434 self.y_max = y_max 435 436 def __call__(self, data2D): 437 """ 438 Perform the sum in the region of interest 439 440 :param data2D: Data2D object 441 :return: number of counts, error on number of counts, 442 number of points summed 443 """ 444 y, err_y, y_counts = self._sum(data2D) 445 446 # Average the sums 447 counts = 0 if y_counts == 0 else y 448 error = 0 if y_counts == 0 else math.sqrt(err_y) 449 450 # Added y_counts to return, SMK & PDB, 04/03/2013 451 return counts, error, y_counts 452 453 def _sum(self, data2D): 454 """ 455 Perform the sum in the region of interest 456 457 :param data2D: Data2D object 458 :return: number of counts, 459 error on number of counts, number of entries summed 460 """ 461 if len(data2D.detector) > 1: 462 msg = "Circular averaging: invalid number " 463 msg += "of detectors: %g" % len(data2D.detector) 464 raise RuntimeError(msg) 465 # Get data 466 data = data2D.data[np.isfinite(data2D.data)] 467 err_data = data2D.err_data[np.isfinite(data2D.data)] 468 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 469 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 470 471 y = 0.0 472 err_y = 0.0 473 y_counts = 0.0 474 475 # Average pixelsize in q space 476 for npts in range(len(data)): 477 # default frac 478 frac_x = 0 479 frac_y = 0 480 481 # get min and max at each points 482 qx = qx_data[npts] 483 qy = qy_data[npts] 484 485 # get the ROI 486 if self.x_min <= qx and self.x_max > qx: 487 frac_x = 1 488 if self.y_min <= qy and self.y_max > qy: 489 frac_y = 1 490 # Find the fraction along each directions 491 frac = frac_x * frac_y 492 if frac == 0: 493 continue 494 y += frac * data[npts] 495 if err_data is None or err_data[npts] == 0.0: 496 if data[npts] < 0: 497 data[npts] = -data[npts] 498 err_y += frac * frac * data[npts] 499 else: 500 err_y += frac * frac * err_data[npts] * err_data[npts] 501 y_counts += frac 502 return y, err_y, y_counts 503 504 505 class Boxavg(Boxsum): 506 """ 507 Perform the average of counts in a 2D region of interest. 508 """ 509 510 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 511 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, 512 y_min=y_min, y_max=y_max) 513 514 def __call__(self, data2D): 515 """ 516 Perform the sum in the region of interest 517 518 :param data2D: Data2D object 519 :return: average counts, error on average counts 520 521 """ 522 y, err_y, y_counts = self._sum(data2D) 523 524 # Average the sums 525 counts = 0 if y_counts == 0 else y / y_counts 526 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts 527 528 return counts, error 529 530 ################################################################################ 531 532 class CircularAverage(object): 533 """ 534 Perform circular averaging on 2D data 535 536 The data returned is the distribution of counts 537 as a function of Q 538 """ 539 540 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 541 # Minimum radius included in the average [A-1] 542 self.r_min = r_min 543 # Maximum radius included in the average [A-1] 544 self.r_max = r_max 545 # Bin width (step size) [A-1] 546 self.bin_width = bin_width 547 548 def __call__(self, data2D, ismask=False): 549 """ 550 Perform circular averaging on the data 551 552 :param data2D: Data2D object 553 :return: Data1D object 554 """ 555 # Get data W/ finite values 556 data = data2D.data[np.isfinite(data2D.data)] 557 q_data = data2D.q_data[np.isfinite(data2D.data)] 558 err_data = data2D.err_data[np.isfinite(data2D.data)] 559 mask_data = data2D.mask[np.isfinite(data2D.data)] 560 561 dq_data = None 562 if data2D.dqx_data != None and data2D.dqy_data != None: 563 dq_data = get_dq_data(data2D) 564 565 #q_data_max = np.max(q_data) 566 if len(data2D.q_data) == None: 567 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 568 raise RuntimeError(msg) 569 570 # Build array of Q intervals 571 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 572 573 x = np.zeros(nbins) 574 y = np.zeros(nbins) 575 err_y = np.zeros(nbins) 576 err_x = np.zeros(nbins) 577 y_counts = np.zeros(nbins) 578 579 for npt in range(len(data)): 580 581 if ismask and not mask_data[npt]: 582 continue 583 584 frac = 0 585 586 # q-value at the pixel (j,i) 587 q_value = q_data[npt] 588 data_n = data[npt] 589 590 # No need to calculate the frac when all data are within range 591 if self.r_min >= self.r_max: 592 raise ValueError("Limit Error: min > max") 593 594 if self.r_min <= q_value and q_value <= self.r_max: 595 frac = 1 596 if frac == 0: 597 continue 598 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 599 600 # Take care of the edge case at phi = 2pi. 601 if i_q == nbins: 602 i_q = nbins - 1 603 y[i_q] += frac * data_n 604 # Take dqs from data to get the q_average 605 x[i_q] += frac * q_value 606 if err_data is None or err_data[npt] == 0.0: 607 if data_n < 0: 608 data_n = -data_n 609 err_y[i_q] += frac * frac * data_n 610 else: 611 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 612 if dq_data != None: 613 # To be consistent with dq calculation in 1d reduction, 614 # we need just the averages (not quadratures) because 615 # it should not depend on the number of the q points 616 # in the qr bins. 617 err_x[i_q] += frac * dq_data[npt] 618 else: 619 err_x = None 620 y_counts[i_q] += frac 621 622 # Average the sums 623 for n in range(nbins): 624 if err_y[n] < 0: 625 err_y[n] = -err_y[n] 626 err_y[n] = math.sqrt(err_y[n]) 627 # if err_x != None: 628 # err_x[n] = math.sqrt(err_x[n]) 629 630 err_y = err_y / y_counts 631 err_y[err_y == 0] = np.average(err_y) 632 y = y / y_counts 633 x = x / y_counts 634 idx = (np.isfinite(y)) & (np.isfinite(x)) 635 636 if err_x != None: 637 d_x = err_x[idx] / y_counts[idx] 638 else: 639 d_x = None 640 641 if not idx.any(): 642 msg = "Average Error: No points inside ROI to average..." 643 raise ValueError(msg) 644 645 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 646 647 ################################################################################ 648 649 class Ring(object): 650 """ 651 Defines a ring on a 2D data set. 652 The ring is defined by r_min, r_max, and 653 the position of the center of the ring. 654 655 The data returned is the distribution of counts 656 around the ring as a function of phi. 657 658 Phi_min and phi_max should be defined between 0 and 2*pi 659 in anti-clockwise starting from the x- axis on the left-hand side 660 """ 661 # Todo: remove center. 662 663 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 664 # Minimum radius 665 self.r_min = r_min 666 # Maximum radius 667 self.r_max = r_max 668 # Center of the ring in x 669 self.center_x = center_x 670 # Center of the ring in y 671 self.center_y = center_y 672 # Number of angular bins 673 self.nbins_phi = nbins 674 675 def __call__(self, data2D): 676 """ 677 Apply the ring to the data set. 678 Returns the angular distribution for a given q range 679 680 :param data2D: Data2D object 681 682 :return: Data1D object 683 """ 684 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 685 raise RuntimeError("Ring averaging only take plottable_2D objects") 686 687 Pi = math.pi 688 689 # Get data 690 data = data2D.data[np.isfinite(data2D.data)] 691 q_data = data2D.q_data[np.isfinite(data2D.data)] 692 err_data = data2D.err_data[np.isfinite(data2D.data)] 693 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 694 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 695 696 # Set space for 1d outputs 697 phi_bins = np.zeros(self.nbins_phi) 698 phi_counts = np.zeros(self.nbins_phi) 699 phi_values = np.zeros(self.nbins_phi) 700 phi_err = np.zeros(self.nbins_phi) 701 702 # Shift to apply to calculated phi values in order 703 # to center first bin at zero 704 phi_shift = Pi / self.nbins_phi 705 706 for npt in range(len(data)): 707 frac = 0 708 # q-value at the point (npt) 709 q_value = q_data[npt] 710 data_n = data[npt] 711 712 # phi-value at the point (npt) 713 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 714 715 if self.r_min <= q_value and q_value <= self.r_max: 716 frac = 1 717 if frac == 0: 718 continue 719 # binning 720 i_phi = int(math.floor((self.nbins_phi) * 721 (phi_value + phi_shift) / (2 * Pi))) 722 723 # Take care of the edge case at phi = 2pi. 724 if i_phi >= self.nbins_phi: 725 i_phi = 0 726 phi_bins[i_phi] += frac * data[npt] 727 728 if err_data is None or err_data[npt] == 0.0: 729 if data_n < 0: 730 data_n = -data_n 731 phi_err[i_phi] += frac * frac * math.fabs(data_n) 732 else: 733 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 734 phi_counts[i_phi] += frac 735 736 for i in range(self.nbins_phi): 737 phi_bins[i] = phi_bins[i] / phi_counts[i] 738 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 739 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 740 741 idx = (np.isfinite(phi_bins)) 742 743 if not idx.any(): 744 msg = "Average Error: No points inside ROI to average..." 745 raise ValueError(msg) 746 # elif len(phi_bins[idx])!= self.nbins_phi: 747 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 748 #,"empty bin(s) due to tight binning..." 749 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 750 751 ################################################################################ 746 752 747 753 class _Sector(object): … … 776 782 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 777 783 raise RuntimeError("Ring averaging only take plottable_2D objects") 778 Pi = math.pi779 784 780 785 # Get the all data & info … … 784 789 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 785 790 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 791 786 792 dq_data = None 787 788 # Get the dq for resolution averaging789 793 if data2D.dqx_data != None and data2D.dqy_data != None: 790 # The pinholes and det. pix contribution present 791 # in both direction of the 2D which must be subtracted when 792 # converting to 1D: dq_overlap should calculated ideally at 793 # q = 0. 794 # Extrapolate dqy(perp) at q = 0 795 z_max = max(data2D.q_data) 796 z_min = min(data2D.q_data) 797 x_max = data2D.dqx_data[data2D.q_data[z_max]] 798 x_min = data2D.dqx_data[data2D.q_data[z_min]] 799 y_max = data2D.dqy_data[data2D.q_data[z_max]] 800 y_min = data2D.dqy_data[data2D.q_data[z_min]] 801 # Find qdx at q = 0 802 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 803 # when extrapolation goes wrong 804 if dq_overlap_x > min(data2D.dqx_data): 805 dq_overlap_x = min(data2D.dqx_data) 806 dq_overlap_x *= dq_overlap_x 807 # Find qdx at q = 0 808 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 809 # when extrapolation goes wrong 810 if dq_overlap_y > min(data2D.dqy_data): 811 dq_overlap_y = min(data2D.dqy_data) 812 # get dq at q=0. 813 dq_overlap_y *= dq_overlap_y 814 815 dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 816 if dq_overlap < 0: 817 dq_overlap = y_min 818 dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] 819 dqy_data = data2D.dqy_data[np.isfinite( 820 data2D.data)] - dq_overlap 821 # def; dqx_data = dq_r dqy_data = dq_phi 822 # Convert dq 2D to 1D here 823 dqx = dqx_data * dqx_data 824 dqy = dqy_data * dqy_data 825 dq_data = np.add(dqx, dqy) 826 dq_data = np.sqrt(dq_data) 794 dq_data = get_dq_data(data2D) 827 795 828 796 # set space for 1d outputs … … 838 806 839 807 for n in range(len(data)): 840 frac = 0841 808 842 809 # q-value at the pixel (j,i) … … 848 815 849 816 # phi-value of the pixel (j,i) 850 phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi817 phi_value = math.atan2(qy_data[n], qx_data[n]) + math.pi 851 818 852 819 # No need to calculate the frac when all data are within range 853 if self.r_min <= q_value and q_value <= self.r_max: 854 frac = 1 855 if frac == 0: 820 if self.r_min > q_value or q_value > self.r_max: 856 821 continue 822 857 823 # In case of two ROIs (symmetric major and minor regions)(for 'q2') 858 824 if run.lower() == 'q2': 859 825 # For minor sector wing 860 826 # Calculate the minor wing phis 861 phi_min_minor = flip_phi(phi_min - Pi)862 phi_max_minor = flip_phi(phi_max - Pi)827 phi_min_minor = flip_phi(phi_min - math.pi) 828 phi_max_minor = flip_phi(phi_max - math.pi) 863 829 # Check if phis of the minor ring is within 0 to 2pi 864 830 if phi_min_minor > phi_max_minor: … … 879 845 880 846 if not is_in: 881 frac = 0882 if frac == 0:883 847 continue 884 848 # Check which type of averaging we need … … 897 861 898 862 # Get the total y 899 y[i_bin] += frac *data_n900 x[i_bin] += frac *q_value863 y[i_bin] += data_n 864 x[i_bin] += q_value 901 865 if err_data[n] == None or err_data[n] == 0.0: 902 866 if data_n < 0: 903 867 data_n = -data_n 904 y_err[i_bin] += frac * frac *data_n868 y_err[i_bin] += data_n 905 869 else: 906 y_err[i_bin] += frac * frac *err_data[n] * err_data[n]870 y_err[i_bin] += err_data[n] * err_data[n] 907 871 908 872 if dq_data != None: … … 911 875 # it should not depend on the number of the q points 912 876 # in the qr bins. 913 x_err[i_bin] += frac *dq_data[n]877 x_err[i_bin] += dq_data[n] 914 878 else: 915 879 x_err = None 916 y_counts[i_bin] += frac880 y_counts[i_bin] += 1 917 881 918 882 # Organize the results … … 988 952 return self._agv(data2D, 'q2') 989 953 954 ################################################################################ 990 955 991 956 class Ringcut(object): … … 1032 997 return out 1033 998 999 ################################################################################ 1034 1000 1035 1001 class Boxcut(object): … … 1081 1047 return outx & outy 1082 1048 1049 ################################################################################ 1083 1050 1084 1051 class Sectorcut(object):
Note: See TracChangeset
for help on using the changeset viewer.