Changeset ca6cbc1c in sasview for src


Ignore:
Timestamp:
Jan 17, 2017 7:20:37 AM (8 years ago)
Author:
wojciech
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
ef0e644
Parents:
ae9b8bf
Message:

Updated documentation for lib functions in sasmodels. Refers to ticket 804

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/fitting/media/plugin.rst

    rca1eaeb rca6cbc1c  
    568568    cube(x): 
    569569        $x^3$ 
    570     sinc(x): 
     570    sas_sinx_x(x): 
    571571        $\sin(x)/x$, with limit $\sin(0)/0 = 1$. 
    572572    powr(x, y): 
     
    669669        (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_) 
    670670 
    671     Si(x): 
     671    sas_Si(x): 
    672672        Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 
    673673 
     
    693693        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/Si.c>`_) 
    694694 
    695     sph_j1c(x): 
     695    sas_3j1x_x(x): 
    696696        Spherical Bessel form 
    697697        $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, 
     
    701701        This function uses a Taylor series for small $x$ for numerical accuracy. 
    702702 
    703         :code:`source = ["lib/sph_j1c.c", ...]` 
    704         (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sph_j1c.c>`_) 
    705  
    706  
    707     sas_J1c(x): 
     703        :code:`source = ["lib/sas_3j1x_x.c", ...]` 
     704        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_) 
     705 
     706 
     707    sas_2J1x_x(x): 
    708708        Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value 
    709709        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind 
Note: See TracChangeset for help on using the changeset viewer.