Changeset ca1af82 in sasview for src


Ignore:
Timestamp:
Apr 7, 2014 10:56:55 AM (11 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
b2de19d
Parents:
9e78edb
Message:
 
File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sans/models/media/model_functions.rst

    r77cfcf0 rca1af82  
    20272027**2.1.25. EllipsoidModel** 
    20282028 
    2029 This model provides the form factor for an ellipsoid (ellipsoid of 
    2030 revolution) with uniform scattering length density. The form factor is 
    2031 normalized by the particle volume. 
    2032  
    2033 *1.1. Definition* 
    2034  
    2035 The output of the 2D scattering intensity function for oriented 
    2036 ellipsoids is given by (Feigin, 1987): 
    2037  
    2038  
    2039  
    2040  
    2041  
    2042  
    2043  
    2044 where is the angle between the axis of the ellipsoid and the q-vector, 
    2045 V is the volume of the ellipsoid, Ra is the radius along the rotation 
    2046 axis of the ellipsoid, Rb is the radius perpendicular to the rotation 
    2047 axis of the ellipsoid and * (contrast) is the scattering length 
    2048 density difference between the scatterer and the solvent. 
    2049  
    2050 To provide easy access to the orientation of the ellipsoid, we define 
    2051 the rotation axis of the ellipsoid using two angles and . Similarly to 
    2052 the case of the cylinder, those angles are defined on Figure 2. For 
    2053 the ellipsoid, is the angle between the rotation axis and the z-axis. 
    2054  
    2055 For P*S: The 2nd virial coefficient of the solid ellipsoid is 
    2056 calculate based on the radius_a and radius_b values, and used as the 
    2057 effective radius toward S(Q) when P(Q)*S(Q) is applied. 
    2058  
    2059 The returned value is scaled to units of |cm^-1| and the parameters of 
    2060 the ellipsoid model are the following: 
     2029This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density. 
     2030The form factor is normalized by the particle volume. 
     2031 
     2032*2.1.25.1. Definition* 
     2033 
     2034The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987) 
     2035 
     2036.. image:: img/image059.PNG 
     2037 
     2038where 
     2039 
     2040.. image:: img/image119.PNG 
     2041 
     2042and 
     2043 
     2044.. image:: img/image120.PNG 
     2045 
     2046|alpha| is the angle between the axis of the ellipsoid and the *q*\ -vector, *V* is the volume of the ellipsoid, *Ra* 
     2047is the radius along the rotational axis of the ellipsoid, *Rb* is the radius perpendicular to the rotational axis of 
     2048the ellipsoid and |bigdelta|\ |rho| (contrast) is the scattering length density difference between the scatterer and 
     2049the solvent. 
     2050 
     2051To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the ellipsoid using two 
     2052angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. For the ellipsoid, |theta| 
     2053is the angle between the rotational axis and the *z*\ -axis. 
     2054 
     2055NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* and *radius_b* values, and 
     2056used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     2057 
     2058The returned value is scaled to units of |cm^-1| and the parameters of the EllipsoidModel are the following 
    20612059 
    20622060================  ========  ============= 
     
    20732071================  ========  ============= 
    20742072 
    2075  
    2076  
    2077 The output of the 1D scattering intensity function for randomly 
    2078 oriented ellipsoids is then given by the equation above. 
    2079  
    2080 The *axis_theta* and axis *_phi* parameters are not used for the 1D 
    2081 output. Our implementation of the scattering kernel and the 1D 
    2082 scattering intensity use the c-library from NIST. 
    2083  
    2084  
    2085  
    2086 Figure. The angles for oriented ellipsoid 
    2087  
    2088 *2.1. Validation of the ellipsoid model* 
    2089  
    2090 Validation of our code was done by comparing the output of the 1D 
    2091 model to the output of the software provided by the NIST (Kline, 
    2092 2006). Figure 5 shows a comparison of the 1D output of our model and 
    2093 the output of the NIST software. 
    2094  
    2095 Averaging over a distribution of orientation is done by evaluating the 
    2096 equation above. Since we have no other software to compare the 
    2097 implementation of the intensity for fully oriented ellipsoids, we can 
    2098 compare the result of averaging our 2D output using a uniform 
    2099 distribution *p(,* *)* = 1.0. Figure 6 shows the result of such a 
     2073The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given by the equation 
     2074above. 
     2075 
     2076.. image:: img/image121.JPG 
     2077 
     2078The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering 
     2079kernel and the 1D scattering intensity use the c-library from NIST. 
     2080 
     2081.. image:: img/image122.JPG 
     2082 
     2083*Figure. The angles for oriented ellipsoid.* 
     2084 
     2085*2.1.25.1. Validation of the EllipsoidModel* 
     2086 
     2087Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the 
     2088NIST (Kline, 2006). Figure 1 below shows a comparison of the 1D output of our model and the output of the NIST 
     2089software. 
     2090 
     2091.. image:: img/image123.JPG 
     2092 
     2093*Figure 1: Comparison of the SasView scattering intensity for an ellipsoid with the output of the NIST SANS analysis* 
     2094*software.* The parameters were set to: *Scale* = 1.0, *Radius_a* = 20, *Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, 
     2095and *Background* = 0.01 |cm^-1|. 
     2096 
     2097Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software 
     2098to compare the implementation of the intensity for fully oriented ellipsoids, we can compare the result of averaging 
     2099our 2D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a 
    21002100cross-check. 
    21012101 
    2102  
    2103  
    2104 The discrepancy above q=0.3 -1 is due to the way the form factors are 
    2105 calculated in the c-library provided by NIST. A numerical integration 
    2106 has to be performed to obtain P(q) for randomly oriented particles. 
    2107 The NIST software performs that integration with a 76-point Gaussian 
    2108 quadrature rule, which will become imprecise at high q where the 
    2109 amplitude varies quickly as a function of q. The SasView result shown 
    2110 has been obtained by summing over 501 equidistant points in . Our 
    2111 result was found to be stable over the range of q shown for a number 
    2112 of points higher than 500. 
    2113  
    2114 * * 
    2115  
    2116 Figure 5: Comparison of the SasView scattering intensity for an 
    2117 ellipsoid with the output of the NIST SANS analysis software. The 
    2118 parameters were set to: Scale=1.0, Radius_a=20 , Radius_b=400 , 
    2119  
    2120 Contrast=3e-6 |Ang^-2|, and Background=0.01 |cm^-1|. 
    2121  
    2122  
    2123  
    2124  
    2125  
    2126 Figure 6: Comparison of the intensity for uniformly distributed 
    2127 ellipsoids calculated from our 2D model and the intensity from the 
    2128 NIST SANS analysis software. The parameters used were: Scale=1.0, 
    2129 Radius_a=20 , Radius_b=400 , Contrast=3e-6 |Ang^-2|, and Background=0.0 cm 
    2130 -1. 
     2102.. image:: img/image124.JPG 
     2103 
     2104*Figure 2: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the* 
     2105*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius_a* = 20, 
     2106*Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|. 
     2107 
     2108The discrepancy above *q* = 0.3 |cm^-1| is due to the way the form factors are calculated in the c-library provided by 
     2109NIST. A numerical integration has to be performed to obtain *P(q)* for randomly oriented particles. The NIST software 
     2110performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high q where the 
     2111amplitude varies quickly as a function of *q*. The SasView result shown has been obtained by summing over 501 
     2112equidistant points in . Our result was found to be stable over the range of *q* shown for a number of points higher 
     2113than 500. 
     2114 
     2115REFERENCE 
     2116L. A. Feigin and D. I. Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum, 
     2117New York, 1987. 
    21312118 
    21322119 
Note: See TracChangeset for help on using the changeset viewer.