- Timestamp:
- Jun 17, 2018 1:45:45 PM (6 years ago)
- Branches:
- master
- Children:
- 298d2d4
- Parents:
- befe905 (diff), b032200 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Location:
- doc/guide
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/sesans/sans_to_sesans.rst
rf0fc507 rd7af1c6 31 31 32 32 in which :math:`t` is the thickness of the sample and :math:`\lambda` is the wavelength of the neutrons. 33 34 Log Spaced SESANS 35 ----------------- 36 37 For computational efficiency, the integral in the Hankel transform is 38 converted into a Reimann sum 39 40 41 .. math:: G(\delta) \approx 42 2 \pi 43 \sum_{Q=q_{min}}^{q_{max}} J_0(Q \delta) 44 \frac{d \Sigma}{d \Omega} (Q) 45 Q \Delta Q \! 46 47 However, this model approximates more than is strictly necessary. 48 Specifically, it is approximating the entire integral, when it is only 49 the scattering function that cannot be handled analytically. A better 50 approximation might be 51 52 .. math:: G(\delta) \approx 53 \sum_{n=0} 2 \pi \frac{d \Sigma}{d \Omega} (q_n) 54 \int_{q_{n-1}}^{q_n} J_0(Q \delta) Q dQ 55 = 56 \sum_{n=0} \frac{2 \pi}{\delta} \frac{d \Sigma}{d \Omega} (q_n) 57 (q_n J_1(q_n \delta) - q_{n-1}J_1(q_{n-1} \delta))\!, 58 59 Assume that vectors :math:`q_n` and :math:`I_n` represent the q points 60 and corresponding intensity data, respectively. Further assume that 61 :math:`\delta_m` and :math:`G_m` are the spin echo lengths and 62 corresponding Hankel transform value. 63 64 .. math:: G_m = H_{nm} I_n 65 66 where 67 68 .. math:: H_{nm} = \frac{2 \pi}{\delta_m} 69 (q_n J_1(q_n \delta_m) - q_{n-1} J_1(q_{n-1} \delta_m)) 70 71 Also not that, for the limit as :math:`\delta_m` approaches zero, 72 73 .. math:: G(0) 74 = 75 \sum_{n=0} \pi \frac{d \Sigma}{d \Omega} (q_n) (q_n^2 - q_{n-1}^2) -
doc/guide/magnetism/magnetism.rst
r4f5afc9 rbefe905 39 39 40 40 .. math:: 41 -- &= ( (1-u_i)(1-u_f))^{1/4}\\42 -+ &= ( (1-u_i)(u_f))^{1/4}\\43 +- &= ( (u_i)(1-u_f))^{1/4}\\44 ++ &= ( (u_i)(u_f))^{1/4}41 -- &= (1-u_i)(1-u_f) \\ 42 -+ &= (1-u_i)(u_f) \\ 43 +- &= (u_i)(1-u_f) \\ 44 ++ &= (u_i)(u_f) 45 45 46 46 Ideally the experiment would measure the pure spin states independently and … … 104 104 | 2015-05-02 Steve King 105 105 | 2017-11-15 Paul Kienzle 106 | 2018-06-02 Adam Washington
Note: See TracChangeset
for help on using the changeset viewer.