Changes in / [4f0c993:c935936] in sasmodels
- Files:
-
- 6 deleted
- 28 edited
Legend:
- Unmodified
- Added
- Removed
-
explore/jitter.py
rd4c33d6 r85190c2 3 3 dispersity and possible replacement algorithms. 4 4 """ 5 import sys6 7 5 import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot 8 6 import matplotlib.pyplot as plt 9 7 from matplotlib.widgets import Slider, CheckButtons 10 8 from matplotlib import cm 9 11 10 import numpy as np 12 11 from numpy import pi, cos, sin, sqrt, exp, degrees, radians 13 12 14 def draw_beam(ax , view=(0, 0)):13 def draw_beam(ax): 15 14 #ax.plot([0,0],[0,0],[1,-1]) 16 15 #ax.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=0.8) … … 23 22 x = r*np.outer(np.cos(u), np.ones_like(v)) 24 23 y = r*np.outer(np.sin(u), np.ones_like(v)) 25 z = 1.3*np.outer(np.ones_like(u), v) 26 27 theta, phi = view 28 shape = x.shape 29 points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) 30 points = Rz(phi)*Ry(theta)*points 31 x, y, z = [v.reshape(shape) for v in points] 24 z = np.outer(np.ones_like(u), v) 32 25 33 26 ax.plot_surface(x, y, z, rstride=4, cstride=4, color='y', alpha=0.5) 34 27 35 def draw_jitter(ax, view, jitter): 36 size = [0.1, 0.4, 1.0] 37 draw_shape = draw_parallelepiped 38 #draw_shape = draw_ellipsoid 28 def draw_shimmy(ax, theta, phi, psi, dtheta, dphi, dpsi): 29 size=[0.1, 0.4, 1.0] 30 view=[theta, phi, psi] 31 shimmy=[0,0,0] 32 #draw_shape = draw_parallelepiped 33 draw_shape = draw_ellipsoid 39 34 40 35 #np.random.seed(10) … … 69 64 [ 1, 1, 1], 70 65 ] 71 dtheta, dphi, dpsi = jitter72 66 if dtheta == 0: 73 67 cloud = [v for v in cloud if v[0] == 0] … … 76 70 if dpsi == 0: 77 71 cloud = [v for v in cloud if v[2] == 0] 78 draw_shape(ax, size, view, [0, 0, 0], steps=100, alpha=0.8)72 draw_shape(ax, size, view, shimmy, steps=100, alpha=0.8) 79 73 for point in cloud: 80 delta =[dtheta*point[0], dphi*point[1], dpsi*point[2]]81 draw_shape(ax, size, view, delta, alpha=0.8)74 shimmy=[dtheta*point[0], dphi*point[1], dpsi*point[2]] 75 draw_shape(ax, size, view, shimmy, alpha=0.8) 82 76 for v in 'xyz': 83 77 a, b, c = size … … 86 80 getattr(ax, v+'axis').label.set_text(v) 87 81 88 def draw_ellipsoid(ax, size, view, jitter, steps=25, alpha=1):82 def draw_ellipsoid(ax, size, view, shimmy, steps=25, alpha=1): 89 83 a,b,c = size 84 theta, phi, psi = view 85 dtheta, dphi, dpsi = shimmy 86 90 87 u = np.linspace(0, 2 * np.pi, steps) 91 88 v = np.linspace(0, np.pi, steps) … … 93 90 y = b*np.outer(np.sin(u), np.sin(v)) 94 91 z = c*np.outer(np.ones_like(u), np.cos(v)) 95 x, y, z = transform_xyz(view, jitter, x, y, z) 92 93 shape = x.shape 94 points = np.matrix([x.flatten(),y.flatten(),z.flatten()]) 95 points = Rz(dpsi)*Ry(dtheta)*Rx(dphi)*points 96 points = Rz(phi)*Ry(theta)*Rz(psi)*points 97 x,y,z = [v.reshape(shape) for v in points] 96 98 97 99 ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', alpha=alpha) 98 100 99 draw_labels(ax, view, jitter, [ 100 ('c+', [ 0, 0, c], [ 1, 0, 0]), 101 ('c-', [ 0, 0,-c], [ 0, 0,-1]), 102 ('a+', [ a, 0, 0], [ 0, 0, 1]), 103 ('a-', [-a, 0, 0], [ 0, 0,-1]), 104 ('b+', [ 0, b, 0], [-1, 0, 0]), 105 ('b-', [ 0,-b, 0], [-1, 0, 0]), 106 ]) 107 108 def draw_parallelepiped(ax, size, view, jitter, steps=None, alpha=1): 101 def draw_parallelepiped(ax, size, view, shimmy, alpha=1): 109 102 a,b,c = size 103 theta, phi, psi = view 104 dtheta, dphi, dpsi = shimmy 105 110 106 x = a*np.array([ 1,-1, 1,-1, 1,-1, 1,-1]) 111 107 y = b*np.array([ 1, 1,-1,-1, 1, 1,-1,-1]) … … 122 118 ]) 123 119 124 x, y, z = transform_xyz(view, jitter, x, y, z) 120 points = np.matrix([x,y,z]) 121 points = Rz(dpsi)*Ry(dtheta)*Rx(dphi)*points 122 points = Rz(phi)*Ry(theta)*Rz(psi)*points 123 124 x,y,z = [np.array(v).flatten() for v in points] 125 125 ax.plot_trisurf(x, y, triangles=tri, Z=z, color='w', alpha=alpha) 126 126 127 draw_labels(ax, view, jitter, [ 128 ('c+', [ 0, 0, c], [ 1, 0, 0]), 129 ('c-', [ 0, 0,-c], [ 0, 0,-1]), 130 ('a+', [ a, 0, 0], [ 0, 0, 1]), 131 ('a-', [-a, 0, 0], [ 0, 0,-1]), 132 ('b+', [ 0, b, 0], [-1, 0, 0]), 133 ('b-', [ 0,-b, 0], [-1, 0, 0]), 134 ]) 135 136 def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gauss'): 137 theta, phi, psi = view 138 dtheta, dphi, dpsi = jitter 127 def draw_sphere(ax, radius=10., steps=100): 128 u = np.linspace(0, 2 * np.pi, steps) 129 v = np.linspace(0, np.pi, steps) 130 131 x = radius * np.outer(np.cos(u), np.sin(v)) 132 y = radius * np.outer(np.sin(u), np.sin(v)) 133 z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) 134 ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') 135 136 def draw_mesh_new(ax, theta, dtheta, phi, dphi, flow, radius=10., dist='gauss'): 137 theta_center = radians(theta) 138 phi_center = radians(phi) 139 flow_center = radians(flow) 140 dtheta = radians(dtheta) 141 dphi = radians(dphi) 142 143 # 10 point 3-sigma gaussian weights 144 t = np.linspace(-3., 3., 11) 139 145 if dist == 'gauss': 140 t = np.linspace(-3, 3, n)141 146 weights = exp(-0.5*t**2) 142 147 elif dist == 'rect': 143 t = np.linspace(0, 1, n)144 148 weights = np.ones_like(t) 145 149 else: 146 150 raise ValueError("expected dist to be 'gauss' or 'rect'") 147 148 # mesh in theta, phi formed by rotating z 149 z = np.matrix([[0], [0], [radius]]) 150 points = np.hstack([Rx(phi_i)*Ry(theta_i)*z 151 for theta_i in dtheta*t 152 for phi_i in dphi*t]) 153 # rotate relative to beam 154 points = orient_relative_to_beam(view, points) 155 156 w = np.outer(weights, weights) 157 158 x, y, z = [np.array(v).flatten() for v in points] 159 ax.scatter(x, y, z, c=w.flatten(), marker='o', vmin=0., vmax=1.) 151 theta = dtheta*t 152 phi = dphi*t 153 154 x = radius * np.outer(cos(phi), cos(theta)) 155 y = radius * np.outer(sin(phi), cos(theta)) 156 z = radius * np.outer(np.ones_like(phi), sin(theta)) 157 #w = np.outer(weights, weights*abs(cos(dtheta*t))) 158 w = np.outer(weights, weights*abs(cos(theta))) 159 160 x, y, z, w = [v.flatten() for v in (x,y,z,w)] 161 x, y, z = rotate(x, y, z, phi_center, theta_center, flow_center) 162 163 ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.) 164 165 def rotate(x, y, z, phi, theta, psi): 166 R = Rz(phi)*Ry(theta)*Rz(psi) 167 p = np.vstack([x,y,z]) 168 return R*p 160 169 161 170 def Rx(angle): … … 179 188 [0., 0., 1.]] 180 189 return np.matrix(R) 181 182 def transform_xyz(view, jitter, x, y, z):183 x, y, z = [np.asarray(v) for v in (x, y, z)]184 shape = x.shape185 points = np.matrix([x.flatten(),y.flatten(),z.flatten()])186 points = apply_jitter(jitter, points)187 points = orient_relative_to_beam(view, points)188 x, y, z = [np.array(v).reshape(shape) for v in points]189 return x, y, z190 191 def apply_jitter(jitter, points):192 dtheta, dphi, dpsi = jitter193 points = Rx(dphi)*Ry(dtheta)*Rz(dpsi)*points194 return points195 196 def orient_relative_to_beam(view, points):197 theta, phi, psi = view198 points = Rz(phi)*Ry(theta)*Rz(psi)*points199 return points200 201 def draw_labels(ax, view, jitter, text):202 labels, locations, orientations = zip(*text)203 px, py, pz = zip(*locations)204 dx, dy, dz = zip(*orientations)205 206 px, py, pz = transform_xyz(view, jitter, px, py, pz)207 dx, dy, dz = transform_xyz(view, jitter, dx, dy, dz)208 209 for label, p, zdir in zip(labels, zip(px, py, pz), zip(dx, dy, dz)):210 zdir = np.asarray(zdir).flatten()211 ax.text(p[0], p[1], p[2], label, zdir=zdir)212 213 def draw_sphere(ax, radius=10., steps=100):214 u = np.linspace(0, 2 * np.pi, steps)215 v = np.linspace(0, np.pi, steps)216 217 x = radius * np.outer(np.cos(u), np.sin(v))218 y = radius * np.outer(np.sin(u), np.sin(v))219 z = radius * np.outer(np.ones(np.size(u)), np.cos(v))220 ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w')221 190 222 191 def main(): … … 237 206 238 207 axcolor = 'lightgoldenrodyellow' 239 240 208 axtheta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) 241 209 axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) … … 244 212 sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi) 245 213 spsi = Slider(axpsi, 'Psi', -180, 180, valinit=psi) 246 247 214 axdtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) 248 215 axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) … … 250 217 sdtheta = Slider(axdtheta, 'dTheta', 0, 30, valinit=dtheta) 251 218 sdphi = Slider(axdphi, 'dPhi', 0, 30, valinit=dphi) 252 sdpsi = Slider(axdpsi, 'dPsi', 0, 30, valinit=dp si)219 sdpsi = Slider(axdpsi, 'dPsi', 0, 30, valinit=dphi) 253 220 254 221 def update(val, axis=None): 255 view= stheta.val, sphi.val, spsi.val256 jitter= sdtheta.val, sdphi.val, sdpsi.val222 theta, phi, psi = stheta.val, sphi.val, spsi.val 223 dtheta, dphi, dpsi = sdtheta.val, sdphi.val, sdpsi.val 257 224 ax.cla() 258 draw_beam(ax , (0, 0))259 draw_ jitter(ax, view, jitter)260 # draw_jitter(ax, view, (0,0,0))261 draw_mesh(ax, view, jitter)225 draw_beam(ax) 226 draw_shimmy(ax, theta, phi, psi, dtheta, dphi, dpsi) 227 #if not axis.startswith('d'): 228 # ax.view_init(elev=theta, azim=phi) 262 229 plt.gcf().canvas.draw() 263 230 -
sasmodels/details.py
rf39759c rccd5f01 15 15 16 16 import numpy as np # type: ignore 17 from numpy import pi, cos, sin , radians17 from numpy import pi, cos, sin 18 18 19 19 try: … … 29 29 30 30 try: 31 from typing import List , Tuple, Sequence31 from typing import List 32 32 except ImportError: 33 33 pass 34 34 else: 35 35 from .modelinfo import ModelInfo 36 from .modelinfo import ParameterTable37 36 38 37 … … 54 53 coordinates, the total circumference decreases as latitude varies from 55 54 pi r^2 at the equator to 0 at the pole, and the weight associated 56 with a range of latitudevalues needs to be scaled by this circumference.55 with a range of phi values needs to be scaled by this circumference. 57 56 This scale factor needs to be updated each time the theta value 58 57 changes. *theta_par* indicates which of the values in the parameter … … 232 231 nvalues = kernel.info.parameters.nvalues 233 232 scalars = [(v[0] if len(v) else np.NaN) for v, w in pairs] 234 # skipping scale and background when building values and weights 235 values, weights = zip(*pairs[2:npars+2]) if npars else ((), ()) 236 weights = correct_theta_weights(kernel.info.parameters, values, weights) 233 values, weights = zip(*pairs[2:npars+2]) if npars else ((),()) 237 234 length = np.array([len(w) for w in weights]) 238 235 offset = np.cumsum(np.hstack((0, length))) … … 247 244 return call_details, data, is_magnetic 248 245 249 def correct_theta_weights(parameters, values, weights):250 # type: (ParameterTable, Sequence[np.ndarray], Sequence[np.ndarray]) -> Sequence[np.ndarray]251 """252 If there is a theta parameter, update the weights of that parameter so that253 the cosine weighting required for polar integration is preserved. Avoid254 evaluation strictly at the pole, which would otherwise send the weight to255 zero.256 257 Note: values and weights do not include scale and background258 """259 # TODO: document code, explaining why scale and background are skipped260 # given that we don't have scale and background in the list, we261 # should be calling the variables something other than values and weights262 # Apparently the parameters.theta_offset similarly skips scale and263 # and background, so the indexing works out.264 if parameters.theta_offset >= 0:265 index = parameters.theta_offset266 theta = values[index]267 theta_weight = np.minimum(abs(cos(radians(theta))), 1e-6)268 # copy the weights list so we can update it269 weights = list(weights)270 weights[index] = theta_weight*np.asarray(weights[index])271 weights = tuple(weights)272 return weights273 274 246 275 247 def convert_magnetism(parameters, values): 276 # type: (ParameterTable, Sequence[np.ndarray]) -> bool277 248 """ 278 249 Convert magnetism values from polar to rectangular coordinates. … … 284 255 scale = mag[:,0] 285 256 if np.any(scale): 286 theta, phi = radians(mag[:, 1]), radians(mag[:, 2])257 theta, phi = mag[:, 1]*pi/180., mag[:, 2]*pi/180. 287 258 cos_theta = cos(theta) 288 259 mag[:, 0] = scale*cos_theta*cos(phi) # mx … … 298 269 """ 299 270 Create a mesh grid of dispersion parameters and weights. 300 301 pars is a list of pairs (values, weights), where the values are the302 individual parameter values at which to evaluate the polydispersity303 distribution and weights are the weights associated with each value.304 305 Only the volume parameters should be included in this list. Orientation306 parameters do not affect the calculation of effective radius or volume307 ratio.308 271 309 272 Returns [p1,p2,...],w where pj is a vector of values for parameter j -
sasmodels/kernel_header.c
rbb4b509 rbb4b509 164 164 SINCOS(phi*M_PI_180, sn, cn); \ 165 165 q = sqrt(qx*qx + qy*qy); \ 166 cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * sin(theta*M_PI_180)); \166 cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * sin(theta*M_PI_180)); \ 167 167 sn = sqrt(1 - cn*cn); \ 168 168 } while (0) -
sasmodels/kernel_iq.c
rd4c33d6 rbde38b5 25 25 int32_t num_weights; // total length of the weights vector 26 26 int32_t num_active; // number of non-trivial pd loops 27 int32_t theta_par; // id of spherical correction variable (not used)27 int32_t theta_par; // id of spherical correction variable 28 28 } ProblemDetails; 29 29 … … 173 173 174 174 175 #if MAX_PD>0 176 const int theta_par = details->theta_par; 177 const int fast_theta = (theta_par == p0); 178 const int slow_theta = (theta_par >= 0 && !fast_theta); 179 double spherical_correction = 1.0; 180 #else 181 // Note: if not polydisperse the weights cancel and we don't need the 182 // spherical correction. 183 const double spherical_correction = 1.0; 184 #endif 185 175 186 int step = pd_start; 176 187 … … 209 220 #endif 210 221 #if MAX_PD>0 222 if (slow_theta) { // Theta is not in inner loop 223 spherical_correction = fmax(fabs(cos(M_PI_180*local_values.vector[theta_par])), 1.e-6); 224 } 211 225 while(i0 < n0) { 212 226 local_values.vector[p0] = v0[i0]; 213 227 double weight0 = w0[i0] * weight1; 214 228 //printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 0, p0, i0, n0, local_values.vector[p0], weight0); 229 if (fast_theta) { // Theta is in inner loop 230 spherical_correction = fmax(fabs(cos(M_PI_180*local_values.vector[p0])), 1.e-6); 231 } 215 232 #else 216 233 const double weight0 = 1.0; … … 227 244 // Note: weight==0 must always be excluded 228 245 if (weight0 > cutoff) { 229 pd_norm += weight0 * CALL_VOLUME(local_values.table); 246 // spherical correction is set at a minimum of 1e-6, otherwise there 247 // would be problems looking at models with theta=90. 248 const double weight = weight0 * spherical_correction; 249 pd_norm += weight * CALL_VOLUME(local_values.table); 230 250 231 251 #ifdef USE_OPENMP … … 284 304 #endif // !MAGNETIC 285 305 //printf("q_index:%d %g %g %g %g\n",q_index, scattering, weight, spherical_correction, weight0); 286 result[q_index] += weight 0* scattering;306 result[q_index] += weight * scattering; 287 307 } 288 308 } -
sasmodels/kernel_iq.cl
rd4c33d6 rbde38b5 25 25 int32_t num_weights; // total length of the weights vector 26 26 int32_t num_active; // number of non-trivial pd loops 27 int32_t theta_par; // id of spherical correction variable (not used)27 int32_t theta_par; // id of spherical correction variable 28 28 } ProblemDetails; 29 29 … … 169 169 170 170 171 #if MAX_PD>0 172 const int theta_par = details->theta_par; 173 const bool fast_theta = (theta_par == p0); 174 const bool slow_theta = (theta_par >= 0 && !fast_theta); 175 double spherical_correction = 1.0; 176 #else 177 // Note: if not polydisperse the weights cancel and we don't need the 178 // spherical correction. 179 const double spherical_correction = 1.0; 180 #endif 181 171 182 int step = pd_start; 172 183 … … 206 217 #endif 207 218 #if MAX_PD>0 219 if (slow_theta) { // Theta is not in inner loop 220 spherical_correction = fmax(fabs(cos(M_PI_180*local_values.vector[theta_par])), 1.e-6); 221 } 208 222 while(i0 < n0) { 209 223 local_values.vector[p0] = v0[i0]; 210 224 double weight0 = w0[i0] * weight1; 211 225 //if (q_index == 0) printf("step:%d level %d: p:%d i:%d n:%d value:%g weight:%g\n", step, 0, p0, i0, n0, local_values.vector[p0], weight0); 226 if (fast_theta) { // Theta is in inner loop 227 spherical_correction = fmax(fabs(cos(M_PI_180*local_values.vector[p0])), 1.e-6); 228 } 212 229 #else 213 230 const double weight0 = 1.0; … … 215 232 216 233 //if (q_index == 0) {printf("step:%d of %d, pars:",step,pd_stop); for (int i=0; i < NUM_PARS; i++) printf("p%d=%g ",i, local_values.vector[i]); printf("\n"); } 234 //if (q_index == 0) printf("sphcor: %g\n", spherical_correction); 217 235 218 236 #ifdef INVALID … … 223 241 // Note: weight==0 must always be excluded 224 242 if (weight0 > cutoff) { 225 pd_norm += weight0 * CALL_VOLUME(local_values.table); 243 // spherical correction is set at a minimum of 1e-6, otherwise there 244 // would be problems looking at models with theta=90. 245 const double weight = weight0 * spherical_correction; 246 pd_norm += weight * CALL_VOLUME(local_values.table); 226 247 227 248 #if defined(MAGNETIC) && NUM_MAGNETIC > 0 … … 275 296 const double scattering = CALL_IQ(q, q_index, local_values.table); 276 297 #endif // !MAGNETIC 277 this_result += weight 0* scattering;298 this_result += weight * scattering; 278 299 } 279 300 } -
sasmodels/kernelpy.py
rd4c33d6 rdbfd471 197 197 198 198 pd_norm = 0.0 199 spherical_correction = 1.0 199 200 partial_weight = np.NaN 200 201 weight = np.NaN 201 202 202 203 p0_par = call_details.pd_par[0] 204 p0_is_theta = (p0_par == call_details.theta_par) 203 205 p0_length = call_details.pd_length[0] 204 206 p0_index = p0_length … … 217 219 parameters[pd_par] = pd_value[pd_offset+pd_index] 218 220 partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:]) 221 if call_details.theta_par >= 0: 222 cor = sin(pi / 180 * parameters[call_details.theta_par]) 223 spherical_correction = max(abs(cor), 1e-6) 219 224 p0_index = loop_index%p0_length 220 225 221 226 weight = partial_weight * pd_weight[p0_offset + p0_index] 222 227 parameters[p0_par] = pd_value[p0_offset + p0_index] 228 if p0_is_theta: 229 cor = cos(pi/180 * parameters[p0_par]) 230 spherical_correction = max(abs(cor), 1e-6) 223 231 p0_index += 1 224 232 if weight > cutoff: … … 231 239 232 240 # update value and norm 241 weight *= spherical_correction 233 242 total += weight * Iq 234 243 pd_norm += weight * form_volume() -
sasmodels/model_test.py
rbb4b509 rbb4b509 79 79 suite = unittest.TestSuite() 80 80 81 if models[0] in core.KINDS:81 if models[0] == 'all': 82 82 skip = models[1:] 83 models = list_models( models[0])83 models = list_models() 84 84 else: 85 85 skip = [] -
sasmodels/models/barbell.c
r2a0b2b1 r592343f 10 10 //barbell kernel - same as dumbell 11 11 static double 12 _bell_kernel(double q ab, double qc, double h, double radius_bell,13 double half_length )12 _bell_kernel(double q, double h, double radius_bell, 13 double half_length, double sin_alpha, double cos_alpha) 14 14 { 15 15 // translate a point in [-1,1] to a point in [lower,upper] … … 26 26 // m = q R cos(alpha) 27 27 // b = q(L/2-h) cos(alpha) 28 const double m = radius_bell*qc; // cos argument slope29 const double b = (half_length-h)*qc; // cos argument intercept30 const double q ab_r = radius_bell*qab; // Q*R*sin(theta)28 const double m = q*radius_bell*cos_alpha; // cos argument slope 29 const double b = q*(half_length-h)*cos_alpha; // cos argument intercept 30 const double qrst = q*radius_bell*sin_alpha; // Q*R*sin(theta) 31 31 double total = 0.0; 32 32 for (int i = 0; i < 76; i++){ 33 33 const double t = Gauss76Z[i]*zm + zb; 34 34 const double radical = 1.0 - t*t; 35 const double bj = sas_2J1x_x(q ab_r*sqrt(radical));35 const double bj = sas_2J1x_x(qrst*sqrt(radical)); 36 36 const double Fq = cos(m*t + b) * radical * bj; 37 37 total += Gauss76Wt[i] * Fq; … … 44 44 45 45 static double 46 _fq(double qab, double qc, double h, 47 double radius_bell, double radius, double half_length) 46 _fq(double q, double h, 47 double radius_bell, double radius, double half_length, 48 double sin_alpha, double cos_alpha) 48 49 { 49 const double bell_fq = _bell_kernel(q ab, qc, h, radius_bell, half_length);50 const double bj = sas_2J1x_x( radius*qab);51 const double si = sas_sinx_x( half_length*qc);50 const double bell_fq = _bell_kernel(q, h, radius_bell, half_length, sin_alpha, cos_alpha); 51 const double bj = sas_2J1x_x(q*radius*sin_alpha); 52 const double si = sas_sinx_x(q*half_length*cos_alpha); 52 53 const double cyl_fq = 2.0*M_PI*radius*radius*half_length*bj*si; 53 54 const double Aq = bell_fq + cyl_fq; … … 83 84 double sin_alpha, cos_alpha; // slots to hold sincos function output 84 85 SINCOS(alpha, sin_alpha, cos_alpha); 85 const double Aq = _fq(q *sin_alpha, q*cos_alpha, h, radius_bell, radius, half_length);86 const double Aq = _fq(q, h, radius_bell, radius, half_length, sin_alpha, cos_alpha); 86 87 total += Gauss76Wt[i] * Aq * Aq * sin_alpha; 87 88 } … … 102 103 double q, sin_alpha, cos_alpha; 103 104 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 104 const double qab = q*sin_alpha;105 const double qc = q*cos_alpha;106 105 107 106 const double h = -sqrt(square(radius_bell) - square(radius)); 108 const double Aq = _fq(q ab, qc, h, radius_bell, radius, 0.5*length);107 const double Aq = _fq(q, h, radius_bell, radius, 0.5*length, sin_alpha, cos_alpha); 109 108 110 109 // Multiply by contrast^2 and convert to cm-1 -
sasmodels/models/bcc_paracrystal.c
r7e0b281 r50beefe 1 static double 2 bcc_Zq(double qa, double qb, double qc, double dnn, double d_factor) 3 { 4 #if 0 // Equations as written in Matsuoka 5 const double a1 = (+qa + qb + qc)/2.0; 6 const double a2 = (-qa - qb + qc)/2.0; 7 const double a3 = (-qa + qb - qc)/2.0; 8 #else 9 const double a1 = (+qa + qb - qc)/2.0; 10 const double a2 = (+qa - qb + qc)/2.0; 11 const double a3 = (-qa + qb + qc)/2.0; 12 #endif 1 double form_volume(double radius); 2 double Iq(double q,double dnn,double d_factor, double radius,double sld, double solvent_sld); 3 double Iqxy(double qx, double qy, double dnn, 4 double d_factor, double radius,double sld, double solvent_sld, 5 double theta, double phi, double psi); 13 6 14 #if 1 15 // Numerator: (1 - exp(a)^2)^3 16 // => (-(exp(2a) - 1))^3 17 // => -expm1(2a)^3 18 // Denominator: prod(1 - 2 cos(d ak) exp(a) + exp(2a)) 19 // => prod(exp(a)^2 - 2 cos(d ak) exp(a) + 1) 20 // => prod((exp(a) - 2 cos(d ak)) * exp(a) + 1) 21 const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); 22 const double exp_arg = exp(arg); 23 const double Zq = -cube(expm1(2.0*arg)) 24 / ( ((exp_arg - 2.0*cos(dnn*a1))*exp_arg + 1.0) 25 * ((exp_arg - 2.0*cos(dnn*a2))*exp_arg + 1.0) 26 * ((exp_arg - 2.0*cos(dnn*a3))*exp_arg + 1.0)); 27 #else 28 // Alternate form, which perhaps is more approachable 29 const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); 30 const double sinh_qd = sinh(arg); 31 const double cosh_qd = cosh(arg); 32 const double Zq = sinh_qd/(cosh_qd - cos(dnn*a1)) 33 * sinh_qd/(cosh_qd - cos(dnn*a2)) 34 * sinh_qd/(cosh_qd - cos(dnn*a3)); 35 #endif 7 double _BCC_Integrand(double q, double dnn, double d_factor, double theta, double phi); 8 double _BCCeval(double Theta, double Phi, double temp1, double temp3); 9 double _sphereform(double q, double radius, double sld, double solvent_sld); 36 10 37 return Zq; 11 12 double _BCC_Integrand(double q, double dnn, double d_factor, double theta, double phi) { 13 14 const double Da = d_factor*dnn; 15 const double temp1 = q*q*Da*Da; 16 const double temp3 = q*dnn; 17 18 double retVal = _BCCeval(theta,phi,temp1,temp3)/(4.0*M_PI); 19 return(retVal); 38 20 } 39 21 22 double _BCCeval(double Theta, double Phi, double temp1, double temp3) { 40 23 41 // occupied volume fraction calculated from lattice symmetry and sphere radius 42 static double 43 bcc_volume_fraction(double radius, double dnn) 44 { 45 return 2.0*sphere_volume(sqrt(0.75)*radius/dnn); 24 double result; 25 double sin_theta,cos_theta,sin_phi,cos_phi; 26 SINCOS(Theta, sin_theta, cos_theta); 27 SINCOS(Phi, sin_phi, cos_phi); 28 29 const double temp6 = sin_theta; 30 const double temp7 = sin_theta*cos_phi + sin_theta*sin_phi + cos_theta; 31 const double temp8 = -sin_theta*cos_phi - sin_theta*sin_phi + cos_theta; 32 const double temp9 = -sin_theta*cos_phi + sin_theta*sin_phi - cos_theta; 33 34 const double temp10 = exp((-1.0/8.0)*temp1*(temp7*temp7 + temp8*temp8 + temp9*temp9)); 35 result = cube(1.0 - (temp10*temp10))*temp6 36 / ( (1.0 - 2.0*temp10*cos(0.5*temp3*temp7) + temp10*temp10) 37 * (1.0 - 2.0*temp10*cos(0.5*temp3*temp8) + temp10*temp10) 38 * (1.0 - 2.0*temp10*cos(0.5*temp3*temp9) + temp10*temp10)); 39 40 return (result); 46 41 } 47 42 48 static double 49 form_volume(double radius) 50 { 43 double form_volume(double radius){ 51 44 return sphere_volume(radius); 52 45 } 53 46 54 47 55 staticdouble Iq(double q, double dnn,48 double Iq(double q, double dnn, 56 49 double d_factor, double radius, 57 double sld, double solvent_sld) 58 { 59 // translate a point in [-1,1] to a point in [0, 2 pi] 60 const double phi_m = M_PI; 61 const double phi_b = M_PI; 62 // translate a point in [-1,1] to a point in [0, pi] 63 const double theta_m = M_PI_2; 64 const double theta_b = M_PI_2; 50 double sld, double solvent_sld){ 65 51 66 double outer_sum = 0.0; 67 for(int i=0; i<150; i++) { 68 double inner_sum = 0.0; 69 const double theta = Gauss150Z[i]*theta_m + theta_b; 70 double sin_theta, cos_theta; 71 SINCOS(theta, sin_theta, cos_theta); 72 const double qc = q*cos_theta; 73 const double qab = q*sin_theta; 74 for(int j=0;j<150;j++) { 75 const double phi = Gauss150Z[j]*phi_m + phi_b; 76 double sin_phi, cos_phi; 77 SINCOS(phi, sin_phi, cos_phi); 78 const double qa = qab*cos_phi; 79 const double qb = qab*sin_phi; 80 const double form = bcc_Zq(qa, qb, qc, dnn, d_factor); 81 inner_sum += Gauss150Wt[j] * form; 82 } 83 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 84 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 85 } 86 outer_sum *= theta_m; 87 const double Zq = outer_sum/(4.0*M_PI); 88 const double Pq = sphere_form(q, radius, sld, solvent_sld); 89 return bcc_volume_fraction(radius, dnn) * Pq * Zq; 52 //Volume fraction calculated from lattice symmetry and sphere radius 53 const double s1 = dnn/sqrt(0.75); 54 const double latticescale = 2.0*sphere_volume(radius/s1); 55 56 const double va = 0.0; 57 const double vb = 2.0*M_PI; 58 const double vaj = 0.0; 59 const double vbj = M_PI; 60 61 double summ = 0.0; 62 double answer = 0.0; 63 for(int i=0; i<150; i++) { 64 //setup inner integral over the ellipsoidal cross-section 65 double summj=0.0; 66 const double zphi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi 67 for(int j=0;j<150;j++) { 68 //20 gauss points for the inner integral 69 double ztheta = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta 70 double yyy = Gauss150Wt[j] * _BCC_Integrand(q,dnn,d_factor,ztheta,zphi); 71 summj += yyy; 72 } 73 //now calculate the value of the inner integral 74 double answer = (vbj-vaj)/2.0*summj; 75 76 //now calculate outer integral 77 summ = summ+(Gauss150Wt[i] * answer); 78 } //final scaling is done at the end of the function, after the NT_FP64 case 79 80 answer = (vb-va)/2.0*summ; 81 answer = answer*sphere_form(q,radius,sld,solvent_sld)*latticescale; 82 83 return answer; 90 84 } 91 85 92 86 93 staticdouble Iqxy(double qx, double qy,87 double Iqxy(double qx, double qy, 94 88 double dnn, double d_factor, double radius, 95 89 double sld, double solvent_sld, … … 98 92 double q, zhat, yhat, xhat; 99 93 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 100 const double qa = q*xhat;101 const double qb = q*yhat;102 const double qc = q*zhat;103 94 104 q = sqrt(qa*qa + qb*qb + qc*qc); 105 const double Zq = bcc_Zq(qa, qb, qc, dnn, d_factor); 106 const double Pq = sphere_form(q, radius, sld, solvent_sld); 107 return bcc_volume_fraction(radius, dnn) * Pq * Zq; 95 const double a1 = +xhat - zhat + yhat; 96 const double a2 = +xhat + zhat - yhat; 97 const double a3 = -xhat + zhat + yhat; 98 99 const double qd = 0.5*q*dnn; 100 const double arg = 0.5*square(qd*d_factor)*(a1*a1 + a2*a2 + a3*a3); 101 const double tanh_qd = tanh(arg); 102 const double cosh_qd = cosh(arg); 103 const double Zq = tanh_qd/(1. - cos(qd*a1)/cosh_qd) 104 * tanh_qd/(1. - cos(qd*a2)/cosh_qd) 105 * tanh_qd/(1. - cos(qd*a3)/cosh_qd); 106 107 const double Fq = sphere_form(q,radius,sld,solvent_sld)*Zq; 108 //the occupied volume of the lattice 109 const double lattice_scale = 2.0*sphere_volume(sqrt(0.75)*radius/dnn); 110 return lattice_scale * Fq; 108 111 } -
sasmodels/models/bcc_paracrystal.py
r2a0b2b1 r69e1afc 81 81 .. figure:: img/parallelepiped_angle_definition.png 82 82 83 Orientation of the crystal with respect to the scattering plane, when 83 Orientation of the crystal with respect to the scattering plane, when 84 84 $\theta = \phi = 0$ the $c$ axis is along the beam direction (the $z$ axis). 85 85 -
sasmodels/models/capped_cylinder.c
r2a0b2b1 r592343f 14 14 // radius_cap is the radius of the lens 15 15 // length is the cylinder length, or the separation between the lens halves 16 // theta is the angle of the cylinder wrt q.16 // alpha is the angle of the cylinder wrt q. 17 17 static double 18 _cap_kernel(double q ab, double qc, double h, double radius_cap,19 double half_length)18 _cap_kernel(double q, double h, double radius_cap, 19 double half_length, double sin_alpha, double cos_alpha) 20 20 { 21 21 // translate a point in [-1,1] to a point in [lower,upper] … … 26 26 27 27 // cos term in integral is: 28 // cos (q (R t - h + L/2) cos( theta))28 // cos (q (R t - h + L/2) cos(alpha)) 29 29 // so turn it into: 30 30 // cos (m t + b) 31 31 // where: 32 // m = q R cos( theta)33 // b = q(L/2-h) cos( theta)34 const double m = radius_cap*qc; // cos argument slope35 const double b = (half_length-h)*qc; // cos argument intercept36 const double q ab_r = radius_cap*qab; // Q*R*sin(theta)32 // m = q R cos(alpha) 33 // b = q(L/2-h) cos(alpha) 34 const double m = q*radius_cap*cos_alpha; // cos argument slope 35 const double b = q*(half_length-h)*cos_alpha; // cos argument intercept 36 const double qrst = q*radius_cap*sin_alpha; // Q*R*sin(theta) 37 37 double total = 0.0; 38 38 for (int i=0; i<76 ;i++) { 39 39 const double t = Gauss76Z[i]*zm + zb; 40 40 const double radical = 1.0 - t*t; 41 const double bj = sas_2J1x_x(q ab_r*sqrt(radical));41 const double bj = sas_2J1x_x(qrst*sqrt(radical)); 42 42 const double Fq = cos(m*t + b) * radical * bj; 43 43 total += Gauss76Wt[i] * Fq; … … 50 50 51 51 static double 52 _fq(double qab, double qc, double h, double radius_cap, double radius, double half_length) 52 _fq(double q, double h, double radius_cap, double radius, double half_length, 53 double sin_alpha, double cos_alpha) 53 54 { 54 const double cap_Fq = _cap_kernel(q ab, qc, h, radius_cap, half_length);55 const double bj = sas_2J1x_x( radius*qab);56 const double si = sas_sinx_x( half_length*qc);55 const double cap_Fq = _cap_kernel(q, h, radius_cap, half_length, sin_alpha, cos_alpha); 56 const double bj = sas_2J1x_x(q*radius*sin_alpha); 57 const double si = sas_sinx_x(q*half_length*cos_alpha); 57 58 const double cyl_Fq = 2.0*M_PI*radius*radius*half_length*bj*si; 58 59 const double Aq = cap_Fq + cyl_Fq; … … 100 101 double total = 0.0; 101 102 for (int i=0; i<76 ;i++) { 102 const double theta = Gauss76Z[i]*zm + zb; 103 double sin_theta, cos_theta; // slots to hold sincos function output 104 SINCOS(theta, sin_theta, cos_theta); 105 const double qab = q*sin_theta; 106 const double qc = q*cos_theta; 107 const double Aq = _fq(qab, qc, h, radius_cap, radius, half_length); 108 // scale by sin_theta for spherical coord integration 109 total += Gauss76Wt[i] * Aq * Aq * sin_theta; 103 const double alpha= Gauss76Z[i]*zm + zb; 104 double sin_alpha, cos_alpha; // slots to hold sincos function output 105 SINCOS(alpha, sin_alpha, cos_alpha); 106 107 const double Aq = _fq(q, h, radius_cap, radius, half_length, sin_alpha, cos_alpha); 108 // sin_alpha for spherical coord integration 109 total += Gauss76Wt[i] * Aq * Aq * sin_alpha; 110 110 } 111 111 // translate dx in [-1,1] to dx in [lower,upper] … … 125 125 double q, sin_alpha, cos_alpha; 126 126 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 127 const double qab = q*sin_alpha;128 const double qc = q*cos_alpha;129 127 130 128 const double h = sqrt(radius_cap*radius_cap - radius*radius); 131 const double Aq = _fq(q ab, qc, h, radius_cap, radius, 0.5*length);129 const double Aq = _fq(q, h, radius_cap, radius, 0.5*length, sin_alpha, cos_alpha); 132 130 133 131 // Multiply by contrast^2 and convert to cm-1 -
sasmodels/models/core_shell_bicelle.c
r2a0b2b1 rb260926 1 static double 2 form_volume(double radius, double thick_rim, double thick_face, double length) 1 double form_volume(double radius, double thick_rim, double thick_face, double length); 2 double Iq(double q, 3 double radius, 4 double thick_rim, 5 double thick_face, 6 double length, 7 double core_sld, 8 double face_sld, 9 double rim_sld, 10 double solvent_sld); 11 12 13 double Iqxy(double qx, double qy, 14 double radius, 15 double thick_rim, 16 double thick_face, 17 double length, 18 double core_sld, 19 double face_sld, 20 double rim_sld, 21 double solvent_sld, 22 double theta, 23 double phi); 24 25 26 double form_volume(double radius, double thick_rim, double thick_face, double length) 3 27 { 4 return M_PI* square(radius+thick_rim)*(length+2.0*thick_face);28 return M_PI*(radius+thick_rim)*(radius+thick_rim)*(length+2.0*thick_face); 5 29 } 6 30 7 31 static double 8 bicelle_kernel(double qab, 9 double qc, 10 double radius, 11 double thick_radius, 12 double thick_face, 13 double halflength, 14 double sld_core, 15 double sld_face, 16 double sld_rim, 17 double sld_solvent) 32 bicelle_kernel(double q, 33 double rad, 34 double radthick, 35 double facthick, 36 double halflength, 37 double rhoc, 38 double rhoh, 39 double rhor, 40 double rhosolv, 41 double sin_alpha, 42 double cos_alpha) 18 43 { 19 const double dr1 = sld_core-sld_face;20 const double dr2 = sld_rim-sld_solvent;21 const double dr3 = sld_face-sld_rim;22 const double vol1 = M_PI*square(rad ius)*2.0*(halflength);23 const double vol2 = M_PI*square(rad ius+thick_radius)*2.0*(halflength+thick_face);24 const double vol3 = M_PI*square(rad ius)*2.0*(halflength+thick_face);44 const double dr1 = rhoc-rhoh; 45 const double dr2 = rhor-rhosolv; 46 const double dr3 = rhoh-rhor; 47 const double vol1 = M_PI*square(rad)*2.0*(halflength); 48 const double vol2 = M_PI*square(rad+radthick)*2.0*(halflength+facthick); 49 const double vol3 = M_PI*square(rad)*2.0*(halflength+facthick); 25 50 26 const double be1 = sas_2J1x_x( (radius)*qab);27 const double be2 = sas_2J1x_x( (radius+thick_radius)*qab);28 const double si1 = sas_sinx_x( (halflength)*qc);29 const double si2 = sas_sinx_x( (halflength+thick_face)*qc);51 const double be1 = sas_2J1x_x(q*(rad)*sin_alpha); 52 const double be2 = sas_2J1x_x(q*(rad+radthick)*sin_alpha); 53 const double si1 = sas_sinx_x(q*(halflength)*cos_alpha); 54 const double si2 = sas_sinx_x(q*(halflength+facthick)*cos_alpha); 30 55 31 56 const double t = vol1*dr1*si1*be1 + … … 33 58 vol3*dr3*si2*be1; 34 59 35 return t; 60 const double retval = t*t; 61 62 return retval; 63 36 64 } 37 65 38 66 static double 39 Iq(double q,40 double radius,41 double thick_radius,42 double thick_face,43 double length,44 double sld_core,45 double sld_face,46 double sld_rim,47 double sld_solvent)67 bicelle_integration(double q, 68 double rad, 69 double radthick, 70 double facthick, 71 double length, 72 double rhoc, 73 double rhoh, 74 double rhor, 75 double rhosolv) 48 76 { 49 77 // set up the integration end points … … 51 79 const double halflength = 0.5*length; 52 80 53 double total= 0.0;81 double summ = 0.0; 54 82 for(int i=0;i<N_POINTS_76;i++) { 55 double theta = (Gauss76Z[i] + 1.0)*uplim; 56 double sin_theta, cos_theta; // slots to hold sincos function output 57 SINCOS(theta, sin_theta, cos_theta); 58 double fq = bicelle_kernel(q*sin_theta, q*cos_theta, radius, thick_radius, thick_face, 59 halflength, sld_core, sld_face, sld_rim, sld_solvent); 60 total += Gauss76Wt[i]*fq*fq*sin_theta; 83 double alpha = (Gauss76Z[i] + 1.0)*uplim; 84 double sin_alpha, cos_alpha; // slots to hold sincos function output 85 SINCOS(alpha, sin_alpha, cos_alpha); 86 double yyy = Gauss76Wt[i] * bicelle_kernel(q, rad, radthick, facthick, 87 halflength, rhoc, rhoh, rhor, rhosolv, 88 sin_alpha, cos_alpha); 89 summ += yyy*sin_alpha; 61 90 } 62 91 63 92 // calculate value of integral to return 64 double answer = total*uplim; 93 double answer = uplim*summ; 94 return answer; 95 } 96 97 static double 98 bicelle_kernel_2d(double qx, double qy, 99 double radius, 100 double thick_rim, 101 double thick_face, 102 double length, 103 double core_sld, 104 double face_sld, 105 double rim_sld, 106 double solvent_sld, 107 double theta, 108 double phi) 109 { 110 double q, sin_alpha, cos_alpha; 111 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 112 113 double answer = bicelle_kernel(q, radius, thick_rim, thick_face, 114 0.5*length, core_sld, face_sld, rim_sld, 115 solvent_sld, sin_alpha, cos_alpha); 65 116 return 1.0e-4*answer; 66 117 } 67 118 68 static double 69 Iqxy(double qx, double qy, 70 double radius, 71 double thick_rim, 72 double thick_face, 73 double length, 74 double core_sld, 75 double face_sld, 76 double rim_sld, 77 double solvent_sld, 78 double theta, 79 double phi) 119 double Iq(double q, 120 double radius, 121 double thick_rim, 122 double thick_face, 123 double length, 124 double core_sld, 125 double face_sld, 126 double rim_sld, 127 double solvent_sld) 80 128 { 81 double q, sin_alpha, cos_alpha;82 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha);83 const double qab = q*sin_alpha;84 const double qc = q*cos_alpha; 129 double intensity = bicelle_integration(q, radius, thick_rim, thick_face, 130 length, core_sld, face_sld, rim_sld, solvent_sld); 131 return intensity*1.0e-4; 132 } 85 133 86 double fq = bicelle_kernel(qab, qc, radius, thick_rim, thick_face, 87 0.5*length, core_sld, face_sld, rim_sld, 88 solvent_sld); 89 return 1.0e-4*fq*fq; 134 135 double Iqxy(double qx, double qy, 136 double radius, 137 double thick_rim, 138 double thick_face, 139 double length, 140 double core_sld, 141 double face_sld, 142 double rim_sld, 143 double solvent_sld, 144 double theta, 145 double phi) 146 { 147 double intensity = bicelle_kernel_2d(qx, qy, 148 radius, 149 thick_rim, 150 thick_face, 151 length, 152 core_sld, 153 face_sld, 154 rim_sld, 155 solvent_sld, 156 theta, 157 phi); 158 159 return intensity; 90 160 } -
sasmodels/models/core_shell_bicelle_elliptical.c
r2a0b2b1 rdedcf34 17 17 double thick_face, 18 18 double length, 19 double sld_core,20 double sld_face,21 double sld_rim,22 double sld_solvent)19 double rhoc, 20 double rhoh, 21 double rhor, 22 double rhosolv) 23 23 { 24 double si1,si2,be1,be2; 24 25 // core_shell_bicelle_elliptical, RKH Dec 2016, based on elliptical_cylinder and core_shell_bicelle 25 26 // tested against limiting cases of cylinder, elliptical_cylinder, stacked_discs, and core_shell_bicelle 27 // const double uplim = M_PI_4; 26 28 const double halfheight = 0.5*length; 29 //const double va = 0.0; 30 //const double vb = 1.0; 31 // inner integral limits 32 //const double vaj=0.0; 33 //const double vbj=M_PI; 34 27 35 const double r_major = r_minor * x_core; 28 36 const double r2A = 0.5*(square(r_major) + square(r_minor)); 29 37 const double r2B = 0.5*(square(r_major) - square(r_minor)); 30 const double vol1 = M_PI*r_minor*r_major*(2.0*halfheight);31 const double vol2 =M_PI*(r_minor+thick_rim)*(r_major+thick_rim)*2.0*(halfheight+thick_face);32 const double vol3 =M_PI*r_minor*r_major*2.0*(halfheight+thick_face);33 const double dr1 = vol1*(sld_core-sld_face);34 const double dr2 = vol2*(sld_rim-sld_solvent);35 const double dr3 = vol3*(sld_face-sld_rim);38 const double dr1 = (rhoc-rhoh) *M_PI*r_minor*r_major*(2.0*halfheight);; 39 const double dr2 = (rhor-rhosolv)*M_PI*(r_minor+thick_rim)*(r_major+thick_rim)*2.0*(halfheight+thick_face); 40 const double dr3 = (rhoh-rhor) *M_PI*r_minor*r_major*2.0*(halfheight+thick_face); 41 //const double vol1 = M_PI*r_minor*r_major*(2.0*halfheight); 42 //const double vol2 = M_PI*(r_minor+thick_rim)*(r_major+thick_rim)*2.0*(halfheight+thick_face); 43 //const double vol3 = M_PI*r_minor*r_major*2.0*(halfheight+thick_face); 36 44 37 45 //initialize integral … … 39 47 for(int i=0;i<76;i++) { 40 48 //setup inner integral over the ellipsoidal cross-section 41 //const double va = 0.0; 42 //const double vb = 1.0; 43 //const double cos_theta = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 44 const double cos_theta = ( Gauss76Z[i] + 1.0 )/2.0; 45 const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 46 const double qab = q*sin_theta; 47 const double qc = q*cos_theta; 48 const double si1 = sas_sinx_x(halfheight*qc); 49 const double si2 = sas_sinx_x((halfheight+thick_face)*qc); 50 double inner_sum=0.0; 49 // since we generate these lots of times, why not store them somewhere? 50 //const double cos_alpha = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 51 const double cos_alpha = ( Gauss76Z[i] + 1.0 )/2.0; 52 const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); 53 double inner_sum=0; 54 double sinarg1 = q*halfheight*cos_alpha; 55 double sinarg2 = q*(halfheight+thick_face)*cos_alpha; 56 si1 = sas_sinx_x(sinarg1); 57 si2 = sas_sinx_x(sinarg2); 51 58 for(int j=0;j<76;j++) { 52 59 //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) 53 // inner integral limits 54 //const double vaj=0.0; 55 //const double vbj=M_PI; 56 //const double phi = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 57 const double phi = ( Gauss76Z[j] +1.0)*M_PI_2; 58 const double rr = sqrt(r2A - r2B*cos(phi)); 59 const double be1 = sas_2J1x_x(rr*qab); 60 const double be2 = sas_2J1x_x((rr+thick_rim)*qab); 61 const double fq = dr1*si1*be1 + dr2*si2*be2 + dr3*si2*be1; 62 63 inner_sum += Gauss76Wt[j] * fq * fq; 60 //const double beta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 61 const double beta = ( Gauss76Z[j] +1.0)*M_PI_2; 62 const double rr = sqrt(r2A - r2B*cos(beta)); 63 double besarg1 = q*rr*sin_alpha; 64 double besarg2 = q*(rr+thick_rim)*sin_alpha; 65 be1 = sas_2J1x_x(besarg1); 66 be2 = sas_2J1x_x(besarg2); 67 inner_sum += Gauss76Wt[j] *square(dr1*si1*be1 + 68 dr2*si2*be2 + 69 dr3*si2*be1); 64 70 } 65 71 //now calculate outer integral … … 77 83 double thick_face, 78 84 double length, 79 double sld_core,80 double sld_face,81 double sld_rim,82 double sld_solvent,85 double rhoc, 86 double rhoh, 87 double rhor, 88 double rhosolv, 83 89 double theta, 84 90 double phi, 85 91 double psi) 86 92 { 93 // THIS NEEDS TESTING 87 94 double q, xhat, yhat, zhat; 88 95 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 89 const double qa = q*xhat; 90 const double qb = q*yhat; 91 const double qc = q*zhat; 92 93 const double dr1 = sld_core-sld_face; 94 const double dr2 = sld_rim-sld_solvent; 95 const double dr3 = sld_face-sld_rim; 96 const double dr1 = rhoc-rhoh; 97 const double dr2 = rhor-rhosolv; 98 const double dr3 = rhoh-rhor; 96 99 const double r_major = r_minor*x_core; 97 100 const double halfheight = 0.5*length; … … 101 104 102 105 // Compute effective radius in rotated coordinates 103 const double qr_hat = sqrt(square(r_major*qa) + square(r_minor*qb));104 const double qrshell_hat = sqrt(square((r_major+thick_rim)*qa)105 + square((r_minor+thick_rim)* qb));106 const double be1 = sas_2J1x_x( q r_hat );107 const double be2 = sas_2J1x_x( q rshell_hat );108 const double si1 = sas_sinx_x( halfheight*qc);109 const double si2 = sas_sinx_x( (halfheight + thick_face)*qc);110 const double fq = vol1*dr1*si1*be1 + vol2*dr2*si2*be2 + vol3*dr3*si2*be1;111 return 1.0e-4 * fq*fq;106 const double r_hat = sqrt(square(r_major*xhat) + square(r_minor*yhat)); 107 const double rshell_hat = sqrt(square((r_major+thick_rim)*xhat) 108 + square((r_minor+thick_rim)*yhat)); 109 const double be1 = sas_2J1x_x( q*r_hat ); 110 const double be2 = sas_2J1x_x( q*rshell_hat ); 111 const double si1 = sas_sinx_x( q*halfheight*zhat ); 112 const double si2 = sas_sinx_x( q*(halfheight + thick_face)*zhat ); 113 const double Aq = square( vol1*dr1*si1*be1 + vol2*dr2*si2*be2 + vol3*dr3*si2*be1); 114 return 1.0e-4 * Aq; 112 115 } 116 -
sasmodels/models/core_shell_cylinder.c
r2a0b2b1 r592343f 1 double form_volume(double radius, double thickness, double length); 2 double Iq(double q, double core_sld, double shell_sld, double solvent_sld, 3 double radius, double thickness, double length); 4 double Iqxy(double qx, double qy, double core_sld, double shell_sld, double solvent_sld, 5 double radius, double thickness, double length, double theta, double phi); 6 1 7 // vd = volume * delta_rho 2 // besarg = q * R * sin(theta) 3 // siarg = q * L/2 * cos(theta) 4 static double _cyl(double vd, double besarg, double siarg) 8 // besarg = q * R * sin(alpha) 9 // siarg = q * L/2 * cos(alpha) 10 double _cyl(double vd, double besarg, double siarg); 11 double _cyl(double vd, double besarg, double siarg) 5 12 { 6 13 return vd * sas_sinx_x(siarg) * sas_2J1x_x(besarg); 7 14 } 8 15 9 static double 10 form_volume(double radius, double thickness, double length) 16 double form_volume(double radius, double thickness, double length) 11 17 { 12 return M_PI* square(radius+thickness)*(length+2.0*thickness);18 return M_PI*(radius+thickness)*(radius+thickness)*(length+2.0*thickness); 13 19 } 14 20 15 static double 16 Iq(double q, 21 double Iq(double q, 17 22 double core_sld, 18 23 double shell_sld, … … 23 28 { 24 29 // precalculate constants 25 const double core_ r =radius;26 const double core_ h =0.5*length;30 const double core_qr = q*radius; 31 const double core_qh = q*0.5*length; 27 32 const double core_vd = form_volume(radius,0,length) * (core_sld-shell_sld); 28 const double shell_ r =(radius + thickness);29 const double shell_ h =(0.5*length + thickness);33 const double shell_qr = q*(radius + thickness); 34 const double shell_qh = q*(0.5*length + thickness); 30 35 const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld); 31 36 double total = 0.0; 37 // double lower=0, upper=M_PI_2; 32 38 for (int i=0; i<76 ;i++) { 33 // translate a point in [-1,1] to a point in [0, pi/2] 34 //const double theta = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; 35 double sin_theta, cos_theta; 36 const double theta = Gauss76Z[i]*M_PI_4 + M_PI_4; 37 SINCOS(theta, sin_theta, cos_theta); 38 const double qab = q*sin_theta; 39 const double qc = q*cos_theta; 40 const double fq = _cyl(core_vd, core_r*qab, core_h*qc) 41 + _cyl(shell_vd, shell_r*qab, shell_h*qc); 42 total += Gauss76Wt[i] * fq * fq * sin_theta; 39 // translate a point in [-1,1] to a point in [lower,upper] 40 //const double alpha = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; 41 double sn, cn; 42 const double alpha = 0.5*(Gauss76Z[i]*M_PI_2 + M_PI_2); 43 SINCOS(alpha, sn, cn); 44 const double fq = _cyl(core_vd, core_qr*sn, core_qh*cn) 45 + _cyl(shell_vd, shell_qr*sn, shell_qh*cn); 46 total += Gauss76Wt[i] * fq * fq * sn; 43 47 } 44 48 // translate dx in [-1,1] to dx in [lower,upper] … … 60 64 double q, sin_alpha, cos_alpha; 61 65 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 62 const double qab = q*sin_alpha;63 const double qc = q*cos_alpha;64 66 65 const double core_ r =radius;66 const double core_ h =0.5*length;67 const double core_qr = q*radius; 68 const double core_qh = q*0.5*length; 67 69 const double core_vd = form_volume(radius,0,length) * (core_sld-shell_sld); 68 const double shell_ r =(radius + thickness);69 const double shell_ h =(0.5*length + thickness);70 const double shell_qr = q*(radius + thickness); 71 const double shell_qh = q*(0.5*length + thickness); 70 72 const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld); 71 73 72 const double fq = _cyl(core_vd, core_ r*qab, core_h*qc)73 + _cyl(shell_vd, shell_ r*qab, shell_h*qc);74 const double fq = _cyl(core_vd, core_qr*sin_alpha, core_qh*cos_alpha) 75 + _cyl(shell_vd, shell_qr*sin_alpha, shell_qh*cos_alpha); 74 76 return 1.0e-4 * fq * fq; 75 77 } -
sasmodels/models/core_shell_ellipsoid.c
r2a0b2b1 r0a3d9b2 1 double form_volume(double radius_equat_core, 2 double polar_core, 3 double equat_shell, 4 double polar_shell); 5 double Iq(double q, 6 double radius_equat_core, 7 double x_core, 8 double thick_shell, 9 double x_polar_shell, 10 double core_sld, 11 double shell_sld, 12 double solvent_sld); 1 13 2 // Converted from Igor function gfn4, using the same pattern as ellipsoid3 // for evaluating the parts of the integral.4 // FUNCTION gfn4: CONTAINS F(Q,A,B,MU)**2 AS GIVEN5 // BY (53) & (58-59) IN CHEN AND6 // KOTLARCHYK REFERENCE7 //8 // <OBLATE ELLIPSOID>9 static double10 _cs_ellipsoid_kernel(double qab, double qc,11 double equat_core, double polar_core,12 double equat_shell, double polar_shell,13 double sld_core_shell, double sld_shell_solvent)14 {15 const double qr_core = sqrt(square(equat_core*qab) + square(polar_core*qc));16 const double si_core = sas_3j1x_x(qr_core);17 const double volume_core = M_4PI_3*equat_core*equat_core*polar_core;18 const double fq_core = si_core*volume_core*sld_core_shell;19 14 20 const double qr_shell = sqrt(square(equat_shell*qab) + square(polar_shell*qc)); 21 const double si_shell = sas_3j1x_x(qr_shell); 22 const double volume_shell = M_4PI_3*equat_shell*equat_shell*polar_shell; 23 const double fq_shell = si_shell*volume_shell*sld_shell_solvent; 15 double Iqxy(double qx, double qy, 16 double radius_equat_core, 17 double x_core, 18 double thick_shell, 19 double x_polar_shell, 20 double core_sld, 21 double shell_sld, 22 double solvent_sld, 23 double theta, 24 double phi); 24 25 25 return fq_core + fq_shell;26 }27 26 28 static double 29 form_volume(double radius_equat_core, 30 double x_core, 31 double thick_shell, 32 double x_polar_shell) 27 double form_volume(double radius_equat_core, 28 double x_core, 29 double thick_shell, 30 double x_polar_shell) 33 31 { 34 32 const double equat_shell = radius_equat_core + thick_shell; … … 39 37 40 38 static double 41 Iq(double q,42 double radius_equat_core,43 double x_core,44 double thick_shell,45 double x_polar_shell,46 double core_sld,47 double shell_sld,48 double solvent_sld)39 core_shell_ellipsoid_xt_kernel(double q, 40 double radius_equat_core, 41 double x_core, 42 double thick_shell, 43 double x_polar_shell, 44 double core_sld, 45 double shell_sld, 46 double solvent_sld) 49 47 { 50 const double sld_core_shell = core_sld - shell_sld; 51 const double sld_shell_solvent = shell_sld - solvent_sld; 48 const double lolim = 0.0; 49 const double uplim = 1.0; 50 51 52 const double delpc = core_sld - shell_sld; //core - shell 53 const double delps = shell_sld - solvent_sld; //shell - solvent 54 52 55 53 56 const double polar_core = radius_equat_core*x_core; … … 55 58 const double polar_shell = radius_equat_core*x_core + thick_shell*x_polar_shell; 56 59 57 // translate from [-1, 1] => [0, 1] 58 const double m = 0.5; 59 const double b = 0.5; 60 double total = 0.0; //initialize intergral 60 double summ = 0.0; //initialize intergral 61 61 for(int i=0;i<76;i++) { 62 const double cos_theta = Gauss76Z[i]*m + b; 63 const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 64 double fq = _cs_ellipsoid_kernel(q*sin_theta, q*cos_theta, 65 radius_equat_core, polar_core, 66 equat_shell, polar_shell, 67 sld_core_shell, sld_shell_solvent); 68 total += Gauss76Wt[i] * fq * fq; 62 double zi = 0.5*( Gauss76Z[i]*(uplim-lolim) + uplim + lolim ); 63 double yyy = gfn4(zi, radius_equat_core, polar_core, equat_shell, 64 polar_shell, delpc, delps, q); 65 summ += Gauss76Wt[i] * yyy; 69 66 } 70 total *= m;67 summ *= 0.5*(uplim-lolim); 71 68 72 69 // convert to [cm-1] 73 return 1.0e-4 * total;70 return 1.0e-4 * summ; 74 71 } 75 72 76 73 static double 77 Iqxy(double qx, double qy,78 double radius_equat_core,79 double x_core,80 double thick_shell,81 double x_polar_shell,82 double core_sld,83 double shell_sld,84 double solvent_sld,85 double theta,86 double phi)74 core_shell_ellipsoid_xt_kernel_2d(double qx, double qy, 75 double radius_equat_core, 76 double x_core, 77 double thick_shell, 78 double x_polar_shell, 79 double core_sld, 80 double shell_sld, 81 double solvent_sld, 82 double theta, 83 double phi) 87 84 { 88 85 double q, sin_alpha, cos_alpha; 89 86 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 90 const double qab = q*sin_alpha;91 const double qc = q*cos_alpha;92 87 93 const double sld _core_shell= core_sld - shell_sld;94 const double sld _shell_solvent = shell_sld- solvent_sld;88 const double sldcs = core_sld - shell_sld; 89 const double sldss = shell_sld- solvent_sld; 95 90 96 91 const double polar_core = radius_equat_core*x_core; … … 98 93 const double polar_shell = radius_equat_core*x_core + thick_shell*x_polar_shell; 99 94 100 double fq = _cs_ellipsoid_kernel(qab, qc, 101 radius_equat_core, polar_core, 102 equat_shell, polar_shell, 103 sld_core_shell, sld_shell_solvent); 95 // Call the IGOR library function to get the kernel: 96 // MUST use gfn4 not gf2 because of the def of params. 97 double answer = gfn4(cos_alpha, 98 radius_equat_core, 99 polar_core, 100 equat_shell, 101 polar_shell, 102 sldcs, 103 sldss, 104 q); 104 105 105 106 //convert to [cm-1] 106 return 1.0e-4 * fq * fq; 107 answer *= 1.0e-4; 108 109 return answer; 107 110 } 111 112 double Iq(double q, 113 double radius_equat_core, 114 double x_core, 115 double thick_shell, 116 double x_polar_shell, 117 double core_sld, 118 double shell_sld, 119 double solvent_sld) 120 { 121 double intensity = core_shell_ellipsoid_xt_kernel(q, 122 radius_equat_core, 123 x_core, 124 thick_shell, 125 x_polar_shell, 126 core_sld, 127 shell_sld, 128 solvent_sld); 129 130 return intensity; 131 } 132 133 134 double Iqxy(double qx, double qy, 135 double radius_equat_core, 136 double x_core, 137 double thick_shell, 138 double x_polar_shell, 139 double core_sld, 140 double shell_sld, 141 double solvent_sld, 142 double theta, 143 double phi) 144 { 145 double intensity = core_shell_ellipsoid_xt_kernel_2d(qx, qy, 146 radius_equat_core, 147 x_core, 148 thick_shell, 149 x_polar_shell, 150 core_sld, 151 shell_sld, 152 solvent_sld, 153 theta, 154 phi); 155 156 return intensity; 157 } -
sasmodels/models/core_shell_ellipsoid.py
r2a0b2b1 r9802ab3 25 25 ellipsoid. This may have some undesirable effects if the aspect ratio of the 26 26 ellipsoid is large (ie, if $X << 1$ or $X >> 1$ ), when the $S(q)$ 27 - which assumes spheres - will not in any case be valid. Generating a 28 custom product model will enable separate effective volume fraction and effective 27 - which assumes spheres - will not in any case be valid. Generating a 28 custom product model will enable separate effective volume fraction and effective 29 29 radius in the $S(q)$. 30 30 … … 44 44 45 45 .. math:: 46 \begin{align} 46 \begin{align} 47 47 F(q,\alpha) = &f(q,radius\_equat\_core,radius\_equat\_core.x\_core,\alpha) \\ 48 48 &+ f(q,radius\_equat\_core + thick\_shell,radius\_equat\_core.x\_core + thick\_shell.x\_polar\_shell,\alpha) 49 \end{align} 49 \end{align} 50 50 51 51 where 52 52 53 53 .. math:: 54 54 … … 77 77 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 78 78 79 For oriented ellipsoids the *theta*, *phi* and *psi* orientation parameters will appear when fitting 2D data, 79 For oriented ellipsoids the *theta*, *phi* and *psi* orientation parameters will appear when fitting 2D data, 80 80 see the :ref:`elliptical-cylinder` model for further information. 81 81 … … 139 139 # pylint: enable=bad-whitespace, line-too-long 140 140 141 source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "core_shell_ellipsoid.c"] 141 source = ["lib/sas_3j1x_x.c", "lib/gfn.c", "lib/gauss76.c", 142 "core_shell_ellipsoid.c"] 142 143 143 144 def ER(radius_equat_core, x_core, thick_shell, x_polar_shell): -
sasmodels/models/core_shell_parallelepiped.c
r2a0b2b1 r92dfe0c 1 double form_volume(double length_a, double length_b, double length_c, 1 double form_volume(double length_a, double length_b, double length_c, 2 2 double thick_rim_a, double thick_rim_b, double thick_rim_c); 3 3 double Iq(double q, double core_sld, double arim_sld, double brim_sld, double crim_sld, … … 9 9 double thick_rim_c, double theta, double phi, double psi); 10 10 11 double form_volume(double length_a, double length_b, double length_c, 11 double form_volume(double length_a, double length_b, double length_c, 12 12 double thick_rim_a, double thick_rim_b, double thick_rim_c) 13 13 { 14 14 //return length_a * length_b * length_c; 15 return length_a * length_b * length_c + 16 2.0 * thick_rim_a * length_b * length_c + 15 return length_a * length_b * length_c + 16 2.0 * thick_rim_a * length_b * length_c + 17 17 2.0 * thick_rim_b * length_a * length_c + 18 18 2.0 * thick_rim_c * length_a * length_b; … … 34 34 // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c_scaled 35 35 // Did not understand the code completely, it should be rechecked (Miguel Gonzalez) 36 36 37 37 const double mu = 0.5 * q * length_b; 38 38 39 39 //calculate volume before rescaling (in original code, but not used) 40 //double vol = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 41 //double vol = length_a * length_b * length_c + 42 // 2.0 * thick_rim_a * length_b * length_c + 40 //double vol = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 41 //double vol = length_a * length_b * length_c + 42 // 2.0 * thick_rim_a * length_b * length_c + 43 43 // 2.0 * thick_rim_b * length_a * length_c + 44 44 // 2.0 * thick_rim_c * length_a * length_b; 45 45 46 46 // Scale sides by B 47 47 const double a_scaled = length_a / length_b; … … 101 101 // ( dr0*tmp1*tmp2*tmp3*Vin + drA*(tmpt1-tmp1)*tmp2*tmp3*V1+ drB*tmp1*(tmpt2-tmp2)*tmp3*V2 + drC*tmp1*tmp2*(tmpt3-tmp3)*V3); // correct FF : square of sum of phase factors 102 102 // This is the function called by csparallelepiped_analytical_2D_scaled, 103 // while CSParallelepipedModel calls CSParallelepiped in libCylinder.c 104 103 // while CSParallelepipedModel calls CSParallelepiped in libCylinder.c 104 105 105 // correct FF : sum of square of phase factors 106 106 inner_total += Gauss76Wt[j] * form * form; … … 136 136 double q, zhat, yhat, xhat; 137 137 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 138 const double qa = q*xhat;139 const double qb = q*yhat;140 const double qc = q*zhat;141 138 142 139 // cspkernel in csparallelepiped recoded here … … 163 160 double tc = length_a + 2.0*thick_rim_c; 164 161 //handle arg=0 separately, as sin(t)/t -> 1 as t->0 165 double siA = sas_sinx_x(0.5* length_a*qa);166 double siB = sas_sinx_x(0.5* length_b*qb);167 double siC = sas_sinx_x(0.5* length_c*qc);168 double siAt = sas_sinx_x(0.5* ta*qa);169 double siBt = sas_sinx_x(0.5* tb*qb);170 double siCt = sas_sinx_x(0.5* tc*qc);171 162 double siA = sas_sinx_x(0.5*q*length_a*xhat); 163 double siB = sas_sinx_x(0.5*q*length_b*yhat); 164 double siC = sas_sinx_x(0.5*q*length_c*zhat); 165 double siAt = sas_sinx_x(0.5*q*ta*xhat); 166 double siBt = sas_sinx_x(0.5*q*tb*yhat); 167 double siCt = sas_sinx_x(0.5*q*tc*zhat); 168 172 169 173 170 // f uses Vin, V1, V2, and V3 and it seems to have more sense than the value computed … … 177 174 + drB*siA*(siBt-siB)*siC*V2 178 175 + drC*siA*siB*(siCt*siCt-siC)*V3); 179 176 180 177 return 1.0e-4 * f * f; 181 178 } -
sasmodels/models/cylinder.c
rb34fc77 r592343f 1 double form_volume(double radius, double length); 2 double fq(double q, double sn, double cn,double radius, double length); 3 double orient_avg_1D(double q, double radius, double length); 4 double Iq(double q, double sld, double solvent_sld, double radius, double length); 5 double Iqxy(double qx, double qy, double sld, double solvent_sld, 6 double radius, double length, double theta, double phi); 7 1 8 #define INVALID(v) (v.radius<0 || v.length<0) 2 9 3 static double 4 form_volume(double radius, double length) 10 double form_volume(double radius, double length) 5 11 { 6 12 return M_PI*radius*radius*length; 7 13 } 8 14 9 static double 10 fq(double qab, double qc, double radius, double length) 15 double fq(double q, double sn, double cn, double radius, double length) 11 16 { 12 return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length); 17 // precompute qr and qh to save time in the loop 18 const double qr = q*radius; 19 const double qh = q*0.5*length; 20 return sas_2J1x_x(qr*sn) * sas_sinx_x(qh*cn); 13 21 } 14 22 15 static double 16 orient_avg_1D(double q, double radius, double length) 23 double orient_avg_1D(double q, double radius, double length) 17 24 { 18 25 // translate a point in [-1,1] to a point in [0, pi/2] 19 26 const double zm = M_PI_4; 20 const double zb = M_PI_4; 27 const double zb = M_PI_4; 21 28 22 29 double total = 0.0; 23 30 for (int i=0; i<76 ;i++) { 24 const double theta = Gauss76Z[i]*zm + zb; 25 double sin_theta, cos_theta; // slots to hold sincos function output 26 // theta (theta,phi) the projection of the cylinder on the detector plane 27 SINCOS(theta , sin_theta, cos_theta); 28 const double form = fq(q*sin_theta, q*cos_theta, radius, length); 29 total += Gauss76Wt[i] * form * form * sin_theta; 31 const double alpha = Gauss76Z[i]*zm + zb; 32 double sn, cn; // slots to hold sincos function output 33 // alpha(theta,phi) the projection of the cylinder on the detector plane 34 SINCOS(alpha, sn, cn); 35 total += Gauss76Wt[i] * square( fq(q, sn, cn, radius, length) ) * sn; 30 36 } 31 37 // translate dx in [-1,1] to dx in [lower,upper] … … 33 39 } 34 40 35 static double 36 Iq(double q, 41 double Iq(double q, 37 42 double sld, 38 43 double solvent_sld, … … 44 49 } 45 50 46 static double 47 Iqxy(double qx, double qy,51 52 double Iqxy(double qx, double qy, 48 53 double sld, 49 54 double solvent_sld, … … 55 60 double q, sin_alpha, cos_alpha; 56 61 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 57 const double qab = q*sin_alpha; 58 const double qc = q*cos_alpha; 59 62 //printf("sn: %g cn: %g\n", sin_alpha, cos_alpha); 60 63 const double s = (sld-solvent_sld) * form_volume(radius, length); 61 const double form = fq(q ab, qc, radius, length);64 const double form = fq(q, sin_alpha, cos_alpha, radius, length); 62 65 return 1.0e-4 * square(s * form); 63 66 } -
sasmodels/models/ellipsoid.c
r2a0b2b1 r3b571ae 1 static double 2 form_volume(double radius_polar, double radius_equatorial) 1 double form_volume(double radius_polar, double radius_equatorial); 2 double Iq(double q, double sld, double sld_solvent, double radius_polar, double radius_equatorial); 3 double Iqxy(double qx, double qy, double sld, double sld_solvent, 4 double radius_polar, double radius_equatorial, double theta, double phi); 5 6 double form_volume(double radius_polar, double radius_equatorial) 3 7 { 4 8 return M_4PI_3*radius_polar*radius_equatorial*radius_equatorial; 5 9 } 6 10 7 static double 8 Iq(double q, 11 double Iq(double q, 9 12 double sld, 10 13 double sld_solvent, … … 38 41 } 39 42 40 static double 41 Iqxy(double qx, double qy, 43 double Iqxy(double qx, double qy, 42 44 double sld, 43 45 double sld_solvent, … … 49 51 double q, sin_alpha, cos_alpha; 50 52 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 51 const double qab = q*sin_alpha; 52 const double qc = q*cos_alpha; 53 54 const double qr = sqrt(square(radius_equatorial*qab) + square(radius_polar*qc)); 55 const double f = sas_3j1x_x(qr); 53 const double r = sqrt(square(radius_equatorial*sin_alpha) 54 + square(radius_polar*cos_alpha)); 55 const double f = sas_3j1x_x(q*r); 56 56 const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial); 57 57 58 58 return 1.0e-4 * square(f * s); 59 59 } 60 -
sasmodels/models/elliptical_cylinder.c
r2a0b2b1 r61104c8 1 static double 1 double form_volume(double radius_minor, double r_ratio, double length); 2 double Iq(double q, double radius_minor, double r_ratio, double length, 3 double sld, double solvent_sld); 4 double Iqxy(double qx, double qy, double radius_minor, double r_ratio, double length, 5 double sld, double solvent_sld, double theta, double phi, double psi); 6 7 8 double 2 9 form_volume(double radius_minor, double r_ratio, double length) 3 10 { … … 5 12 } 6 13 7 staticdouble14 double 8 15 Iq(double q, double radius_minor, double r_ratio, double length, 9 16 double sld, double solvent_sld) … … 54 61 55 62 56 staticdouble63 double 57 64 Iqxy(double qx, double qy, 58 65 double radius_minor, double r_ratio, double length, … … 62 69 double q, xhat, yhat, zhat; 63 70 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 64 const double qa = q*xhat;65 const double qb = q*yhat;66 const double qc = q*zhat;67 71 68 72 // Compute: r = sqrt((radius_major*cos_nu)^2 + (radius_minor*cos_mu)^2) 69 73 // Given: radius_major = r_ratio * radius_minor 70 const double qr = radius_minor*sqrt(square(r_ratio*qa) + square(qb));71 const double be = sas_2J1x_x(q r);72 const double si = sas_sinx_x(q c*0.5*length);74 const double r = radius_minor*sqrt(square(r_ratio*xhat) + square(yhat)); 75 const double be = sas_2J1x_x(q*r); 76 const double si = sas_sinx_x(q*zhat*0.5*length); 73 77 const double Aq = be * si; 74 78 const double delrho = sld - solvent_sld; -
sasmodels/models/fcc_paracrystal.c
r7e0b281 r50beefe 1 static double 2 fcc_Zq(double qa, double qb, double qc, double dnn, double d_factor) 3 { 4 #if 0 // Equations as written in Matsuoka 5 const double a1 = ( qa + qb)/2.0; 6 const double a2 = (-qa + qc)/2.0; 7 const double a3 = (-qa + qb)/2.0; 8 #else 9 const double a1 = ( qa + qb)/2.0; 10 const double a2 = ( qa + qc)/2.0; 11 const double a3 = ( qb + qc)/2.0; 12 #endif 1 double form_volume(double radius); 2 double Iq(double q,double dnn,double d_factor, double radius,double sld, double solvent_sld); 3 double Iqxy(double qx, double qy, double dnn, 4 double d_factor, double radius,double sld, double solvent_sld, 5 double theta, double phi, double psi); 13 6 14 // Numerator: (1 - exp(a)^2)^3 15 // => (-(exp(2a) - 1))^3 16 // => -expm1(2a)^3 17 // Denominator: prod(1 - 2 cos(d ak) exp(a) + exp(2a)) 18 // => prod(exp(a)^2 - 2 cos(d ak) exp(a) + 1) 19 // => prod((exp(a) - 2 cos(d ak)) * exp(a) + 1) 20 const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); 21 const double exp_arg = exp(arg); 22 const double Zq = -cube(expm1(2.0*arg)) 23 / ( ((exp_arg - 2.0*cos(dnn*a1))*exp_arg + 1.0) 24 * ((exp_arg - 2.0*cos(dnn*a2))*exp_arg + 1.0) 25 * ((exp_arg - 2.0*cos(dnn*a3))*exp_arg + 1.0)); 7 double _FCC_Integrand(double q, double dnn, double d_factor, double theta, double phi); 8 double _FCCeval(double Theta, double Phi, double temp1, double temp3); 26 9 27 return Zq; 10 11 double _FCC_Integrand(double q, double dnn, double d_factor, double theta, double phi) { 12 13 const double Da = d_factor*dnn; 14 const double temp1 = q*q*Da*Da; 15 const double temp3 = q*dnn; 16 17 double retVal = _FCCeval(theta,phi,temp1,temp3)/(4.0*M_PI); 18 return(retVal); 28 19 } 29 20 21 double _FCCeval(double Theta, double Phi, double temp1, double temp3) { 30 22 31 // occupied volume fraction calculated from lattice symmetry and sphere radius 32 static double 33 fcc_volume_fraction(double radius, double dnn) 34 { 35 return 4.0*sphere_volume(M_SQRT1_2*radius/dnn); 23 double result; 24 double sin_theta,cos_theta,sin_phi,cos_phi; 25 SINCOS(Theta, sin_theta, cos_theta); 26 SINCOS(Phi, sin_phi, cos_phi); 27 28 const double temp6 = sin_theta; 29 const double temp7 = sin_theta*sin_phi + cos_theta; 30 const double temp8 = -sin_theta*cos_phi + cos_theta; 31 const double temp9 = -sin_theta*cos_phi + sin_theta*sin_phi; 32 33 const double temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); 34 result = cube(1.0-(temp10*temp10))*temp6 35 / ( (1.0 - 2.0*temp10*cos(0.5*temp3*temp7) + temp10*temp10) 36 * (1.0 - 2.0*temp10*cos(0.5*temp3*temp8) + temp10*temp10) 37 * (1.0 - 2.0*temp10*cos(0.5*temp3*temp9) + temp10*temp10)); 38 39 return (result); 36 40 } 37 41 38 static double 39 form_volume(double radius) 40 { 42 double form_volume(double radius){ 41 43 return sphere_volume(radius); 42 44 } 43 45 44 46 45 staticdouble Iq(double q, double dnn,47 double Iq(double q, double dnn, 46 48 double d_factor, double radius, 47 double sld, double solvent_sld) 48 { 49 // translate a point in [-1,1] to a point in [0, 2 pi] 50 const double phi_m = M_PI; 51 const double phi_b = M_PI; 52 // translate a point in [-1,1] to a point in [0, pi] 53 const double theta_m = M_PI_2; 54 const double theta_b = M_PI_2; 49 double sld, double solvent_sld){ 55 50 56 double outer_sum = 0.0; 57 for(int i=0; i<150; i++) { 58 double inner_sum = 0.0; 59 const double theta = Gauss150Z[i]*theta_m + theta_b; 60 double sin_theta, cos_theta; 61 SINCOS(theta, sin_theta, cos_theta); 62 const double qc = q*cos_theta; 63 const double qab = q*sin_theta; 64 for(int j=0;j<150;j++) { 65 const double phi = Gauss150Z[j]*phi_m + phi_b; 66 double sin_phi, cos_phi; 67 SINCOS(phi, sin_phi, cos_phi); 68 const double qa = qab*cos_phi; 69 const double qb = qab*sin_phi; 70 const double form = fcc_Zq(qa, qb, qc, dnn, d_factor); 71 inner_sum += Gauss150Wt[j] * form; 72 } 73 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 74 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 75 } 76 outer_sum *= theta_m; 77 const double Zq = outer_sum/(4.0*M_PI); 78 const double Pq = sphere_form(q, radius, sld, solvent_sld); 51 //Volume fraction calculated from lattice symmetry and sphere radius 52 const double s1 = dnn*sqrt(2.0); 53 const double latticescale = 4.0*sphere_volume(radius/s1); 79 54 80 return fcc_volume_fraction(radius, dnn) * Pq * Zq; 55 const double va = 0.0; 56 const double vb = 2.0*M_PI; 57 const double vaj = 0.0; 58 const double vbj = M_PI; 59 60 double summ = 0.0; 61 double answer = 0.0; 62 for(int i=0; i<150; i++) { 63 //setup inner integral over the ellipsoidal cross-section 64 double summj=0.0; 65 const double zphi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi 66 for(int j=0;j<150;j++) { 67 //20 gauss points for the inner integral 68 double ztheta = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta 69 double yyy = Gauss150Wt[j] * _FCC_Integrand(q,dnn,d_factor,ztheta,zphi); 70 summj += yyy; 71 } 72 //now calculate the value of the inner integral 73 double answer = (vbj-vaj)/2.0*summj; 74 75 //now calculate outer integral 76 summ = summ+(Gauss150Wt[i] * answer); 77 } //final scaling is done at the end of the function, after the NT_FP64 case 78 79 answer = (vb-va)/2.0*summ; 80 answer = answer*sphere_form(q,radius,sld,solvent_sld)*latticescale; 81 82 return answer; 83 84 81 85 } 82 86 83 84 static double Iqxy(double qx, double qy, 87 double Iqxy(double qx, double qy, 85 88 double dnn, double d_factor, double radius, 86 89 double sld, double solvent_sld, … … 89 92 double q, zhat, yhat, xhat; 90 93 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 91 const double qa = q*xhat;92 const double qb = q*yhat;93 const double qc = q*zhat;94 94 95 q = sqrt(qa*qa + qb*qb + qc*qc); 96 const double Pq = sphere_form(q, radius, sld, solvent_sld); 97 const double Zq = fcc_Zq(qa, qb, qc, dnn, d_factor); 98 return fcc_volume_fraction(radius, dnn) * Pq * Zq; 95 const double a1 = yhat + xhat; 96 const double a2 = xhat + zhat; 97 const double a3 = yhat + zhat; 98 const double qd = 0.5*q*dnn; 99 const double arg = 0.5*square(qd*d_factor)*(a1*a1 + a2*a2 + a3*a3); 100 const double tanh_qd = tanh(arg); 101 const double cosh_qd = cosh(arg); 102 const double Zq = tanh_qd/(1. - cos(qd*a1)/cosh_qd) 103 * tanh_qd/(1. - cos(qd*a2)/cosh_qd) 104 * tanh_qd/(1. - cos(qd*a3)/cosh_qd); 105 106 //if (isnan(Zq)) printf("q:(%g,%g) qd: %g a1: %g a2: %g a3: %g arg: %g\n", qx, qy, qd, a1, a2, a3, arg); 107 108 const double Fq = sphere_form(q,radius,sld,solvent_sld)*Zq; 109 //the occupied volume of the lattice 110 const double lattice_scale = 4.0*sphere_volume(M_SQRT1_2*radius/dnn); 111 return lattice_scale * Fq; 99 112 } -
sasmodels/models/hollow_cylinder.c
r2a0b2b1 r592343f 1 1 double form_volume(double radius, double thickness, double length); 2 2 double Iq(double q, double radius, double thickness, double length, double sld, 3 3 double solvent_sld); 4 4 double Iqxy(double qx, double qy, double radius, double thickness, double length, double sld, 5 5 double solvent_sld, double theta, double phi); 6 6 7 7 //#define INVALID(v) (v.radius_core >= v.radius) … … 14 14 } 15 15 16 16 17 static double 17 _ fq(double qab, double qc,18 double radius, double thickness, double length )18 _hollow_cylinder_kernel(double q, 19 double radius, double thickness, double length, double sin_val, double cos_val) 19 20 { 20 const double lam1 = sas_2J1x_x((radius+thickness)*qab); 21 const double lam2 = sas_2J1x_x(radius*qab); 21 const double qs = q*sin_val; 22 const double lam1 = sas_2J1x_x((radius+thickness)*qs); 23 const double lam2 = sas_2J1x_x(radius*qs); 22 24 const double gamma_sq = square(radius/(radius+thickness)); 23 //Note: lim_{thickness -> 0} psi = sas_J0(radius*q ab)24 //Note: lim_{radius -> 0} psi = sas_2J1x_x(thickness*q ab)25 const double psi = (lam1 - gamma_sq*lam2)/(1.0 - gamma_sq); 26 const double t2 = sas_sinx_x(0.5* length*qc);25 //Note: lim_{thickness -> 0} psi = sas_J0(radius*qs) 26 //Note: lim_{radius -> 0} psi = sas_2J1x_x(thickness*qs) 27 const double psi = (lam1 - gamma_sq*lam2)/(1.0 - gamma_sq); //SRK 10/19/00 28 const double t2 = sas_sinx_x(0.5*q*length*cos_val); 27 29 return psi*t2; 28 30 } … … 41 43 { 42 44 const double lower = 0.0; 43 const double upper = 1.0; 45 const double upper = 1.0; //limits of numerical integral 44 46 45 double summ = 0.0; 47 double summ = 0.0; //initialize intergral 46 48 for (int i=0;i<76;i++) { 47 const double cos_ theta= 0.5*( Gauss76Z[i] * (upper-lower) + lower + upper );48 const double sin_ theta = sqrt(1.0 - cos_theta*cos_theta);49 const double form = _fq(q*sin_theta, q*cos_theta,50 radius, thickness, length);51 summ += Gauss76Wt[i] * form * form;49 const double cos_val = 0.5*( Gauss76Z[i] * (upper-lower) + lower + upper ); 50 const double sin_val = sqrt(1.0 - cos_val*cos_val); 51 const double inter = _hollow_cylinder_kernel(q, radius, thickness, length, 52 sin_val, cos_val); 53 summ += Gauss76Wt[i] * inter * inter; 52 54 } 53 55 … … 64 66 double q, sin_alpha, cos_alpha; 65 67 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 66 const double qab = q*sin_alpha; 67 const double qc = q*cos_alpha; 68 69 const double form = _fq(qab, qc, radius, thickness, length); 68 const double Aq = _hollow_cylinder_kernel(q, radius, thickness, length, 69 sin_alpha, cos_alpha); 70 70 71 71 const double vol = form_volume(radius, thickness, length); 72 return _hollow_cylinder_scaling( form*form, solvent_sld-sld, vol);72 return _hollow_cylinder_scaling(Aq*Aq, solvent_sld-sld, vol); 73 73 } 74 -
sasmodels/models/parallelepiped.c
r2a0b2b1 rd605080 20 20 { 21 21 const double mu = 0.5 * q * length_b; 22 22 23 23 // Scale sides by B 24 24 const double a_scaled = length_a / length_b; 25 25 const double c_scaled = length_c / length_b; 26 26 27 27 // outer integral (with gauss points), integration limits = 0, 1 28 28 double outer_total = 0; //initialize integral … … 69 69 double q, xhat, yhat, zhat; 70 70 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 71 const double qa = q*xhat;72 const double qb = q*yhat;73 const double qc = q*zhat;74 71 75 const double siA = sas_sinx_x(0.5*length_a*q a);76 const double siB = sas_sinx_x(0.5*length_b*q b);77 const double siC = sas_sinx_x(0.5*length_c*q c);72 const double siA = sas_sinx_x(0.5*length_a*q*xhat); 73 const double siB = sas_sinx_x(0.5*length_b*q*yhat); 74 const double siC = sas_sinx_x(0.5*length_c*q*zhat); 78 75 const double V = form_volume(length_a, length_b, length_c); 79 76 const double drho = (sld - solvent_sld); -
sasmodels/models/sc_paracrystal.c
r7e0b281 r50beefe 1 static double 2 sc_Zq(double qa, double qb, double qc, double dnn, double d_factor) 3 { 4 const double a1 = qa; 5 const double a2 = qb; 6 const double a3 = qc; 1 double form_volume(double radius); 7 2 8 // Numerator: (1 - exp(a)^2)^3 9 // => (-(exp(2a) - 1))^3 10 // => -expm1(2a)^3 11 // Denominator: prod(1 - 2 cos(d ak) exp(a) + exp(2a)) 12 // => prod(exp(a)^2 - 2 cos(d ak) exp(a) + 1) 13 // => prod((exp(a) - 2 cos(d ak)) * exp(a) + 1) 14 const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); 15 const double exp_arg = exp(arg); 16 const double Zq = -cube(expm1(2.0*arg)) 17 / ( ((exp_arg - 2.0*cos(dnn*a1))*exp_arg + 1.0) 18 * ((exp_arg - 2.0*cos(dnn*a2))*exp_arg + 1.0) 19 * ((exp_arg - 2.0*cos(dnn*a3))*exp_arg + 1.0)); 3 double Iq(double q, 4 double dnn, 5 double d_factor, 6 double radius, 7 double sphere_sld, 8 double solvent_sld); 20 9 21 return Zq; 22 } 10 double Iqxy(double qx, double qy, 11 double dnn, 12 double d_factor, 13 double radius, 14 double sphere_sld, 15 double solvent_sld, 16 double theta, 17 double phi, 18 double psi); 23 19 24 // occupied volume fraction calculated from lattice symmetry and sphere radius 25 static double 26 sc_volume_fraction(double radius, double dnn) 27 { 28 return sphere_volume(radius/dnn); 29 } 30 31 static double 32 form_volume(double radius) 20 double form_volume(double radius) 33 21 { 34 22 return sphere_volume(radius); 35 23 } 36 24 25 static double 26 sc_eval(double theta, double phi, double temp3, double temp4, double temp5) 27 { 28 double cnt, snt; 29 SINCOS(theta, cnt, snt); 37 30 38 static double Iq(double q, double dnn, 39 double d_factor, double radius, 40 double sld, double solvent_sld) 41 { 42 // translate a point in [-1,1] to a point in [0, 2 pi] 43 const double phi_m = M_PI_4; 44 const double phi_b = M_PI_4; 45 // translate a point in [-1,1] to a point in [0, pi] 46 const double theta_m = M_PI_4; 47 const double theta_b = M_PI_4; 31 double cnp, snp; 32 SINCOS(phi, cnp, snp); 48 33 49 50 double outer_sum = 0.0; 51 for(int i=0; i<150; i++) { 52 double inner_sum = 0.0; 53 const double theta = Gauss150Z[i]*theta_m + theta_b; 54 double sin_theta, cos_theta; 55 SINCOS(theta, sin_theta, cos_theta); 56 const double qc = q*cos_theta; 57 const double qab = q*sin_theta; 58 for(int j=0;j<150;j++) { 59 const double phi = Gauss150Z[j]*phi_m + phi_b; 60 double sin_phi, cos_phi; 61 SINCOS(phi, sin_phi, cos_phi); 62 const double qa = qab*cos_phi; 63 const double qb = qab*sin_phi; 64 const double form = sc_Zq(qa, qb, qc, dnn, d_factor); 65 inner_sum += Gauss150Wt[j] * form; 66 } 67 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 68 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 69 } 70 outer_sum *= theta_m; 71 const double Zq = outer_sum/M_PI_2; 72 const double Pq = sphere_form(q, radius, sld, solvent_sld); 73 74 return sc_volume_fraction(radius, dnn) * Pq * Zq; 34 double temp6 = snt; 35 double temp7 = -1.0*temp3*snt*cnp; 36 double temp8 = temp3*snt*snp; 37 double temp9 = temp3*cnt; 38 double result = temp6/((1.0-temp4*cos((temp7))+temp5)* 39 (1.0-temp4*cos((temp8))+temp5)* 40 (1.0-temp4*cos((temp9))+temp5)); 41 return (result); 75 42 } 76 43 44 static double 45 sc_integrand(double dnn, double d_factor, double qq, double xx, double yy) 46 { 47 //Function to calculate integrand values for simple cubic structure 77 48 78 static double Iqxy(double qx, double qy, 79 double dnn, double d_factor, double radius, 80 double sld, double solvent_sld, 81 double theta, double phi, double psi) 49 double da = d_factor*dnn; 50 double temp1 = qq*qq*da*da; 51 double temp2 = cube(-expm1(-temp1)); 52 double temp3 = qq*dnn; 53 double temp4 = 2.0*exp(-0.5*temp1); 54 double temp5 = exp(-1.0*temp1); 55 56 double integrand = temp2*sc_eval(yy,xx,temp3,temp4,temp5)/M_PI_2; 57 58 return(integrand); 59 } 60 61 double Iq(double q, 62 double dnn, 63 double d_factor, 64 double radius, 65 double sphere_sld, 66 double solvent_sld) 67 { 68 const double va = 0.0; 69 const double vb = M_PI_2; //orientation average, outer integral 70 71 double summ=0.0; 72 double answer=0.0; 73 74 for(int i=0;i<150;i++) { 75 //setup inner integral over the ellipsoidal cross-section 76 double summj=0.0; 77 double zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; 78 for(int j=0;j<150;j++) { 79 //150 gauss points for the inner integral 80 double zij = ( Gauss150Z[j]*(vb-va) + va + vb )/2.0; 81 double tmp = Gauss150Wt[j] * sc_integrand(dnn,d_factor,q,zi,zij); 82 summj += tmp; 83 } 84 //now calculate the value of the inner integral 85 answer = (vb-va)/2.0*summj; 86 87 //now calculate outer integral 88 double tmp = Gauss150Wt[i] * answer; 89 summ += tmp; 90 } //final scaling is done at the end of the function, after the NT_FP64 case 91 92 answer = (vb-va)/2.0*summ; 93 94 //Volume fraction calculated from lattice symmetry and sphere radius 95 // NB: 4/3 pi r^3 / dnn^3 = 4/3 pi(r/dnn)^3 96 const double latticeScale = sphere_volume(radius/dnn); 97 98 answer *= sphere_form(q, radius, sphere_sld, solvent_sld)*latticeScale; 99 100 return answer; 101 } 102 103 double Iqxy(double qx, double qy, 104 double dnn, 105 double d_factor, 106 double radius, 107 double sphere_sld, 108 double solvent_sld, 109 double theta, 110 double phi, 111 double psi) 82 112 { 83 113 double q, zhat, yhat, xhat; 84 114 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 85 const double qa = q*xhat;86 const double qb = q*yhat;87 const double qc = q*zhat;88 115 89 q = sqrt(qa*qa + qb*qb + qc*qc); 90 const double Pq = sphere_form(q, radius, sld, solvent_sld); 91 const double Zq = sc_Zq(qa, qb, qc, dnn, d_factor); 92 return sc_volume_fraction(radius, dnn) * Pq * Zq; 116 const double qd = q*dnn; 117 const double arg = 0.5*square(qd*d_factor); 118 const double tanh_qd = tanh(arg); 119 const double cosh_qd = cosh(arg); 120 const double Zq = tanh_qd/(1. - cos(qd*zhat)/cosh_qd) 121 * tanh_qd/(1. - cos(qd*yhat)/cosh_qd) 122 * tanh_qd/(1. - cos(qd*xhat)/cosh_qd); 123 124 const double Fq = sphere_form(q, radius, sphere_sld, solvent_sld)*Zq; 125 //the occupied volume of the lattice 126 const double lattice_scale = sphere_volume(radius/dnn); 127 return lattice_scale * Fq; 93 128 } -
sasmodels/models/sc_paracrystal.py
r2a0b2b1 r69e1afc 152 152 [{}, 0.001, 10.3048], 153 153 [{}, 0.215268, 0.00814889], 154 [{}, 0.414467, 0.001313289],154 [{}, (0.414467), 0.001313289], 155 155 [{'theta':10.0,'phi':20,'psi':30.0},(0.045,-0.035),18.0397138402 ], 156 156 [{'theta':10.0,'phi':20,'psi':30.0},(0.023,0.045),0.0177333171285 ] 157 157 ] 158 159 -
sasmodels/models/stacked_disks.c
rb34fc77 r19f996b 1 1 static double stacked_disks_kernel( 2 double qab, 3 double qc, 2 double q, 4 3 double halfheight, 5 4 double thick_layer, … … 10 9 double layer_sld, 11 10 double solvent_sld, 11 double sin_alpha, 12 double cos_alpha, 12 13 double d) 13 14 … … 19 20 // zi is the dummy variable for the integration (x in Feigin's notation) 20 21 21 const double besarg1 = radius*qab;22 //const double besarg2 = radius*qab;22 const double besarg1 = q*radius*sin_alpha; 23 //const double besarg2 = q*radius*sin_alpha; 23 24 24 const double sinarg1 = halfheight*qc;25 const double sinarg2 = (halfheight+thick_layer)*qc;25 const double sinarg1 = q*halfheight*cos_alpha; 26 const double sinarg2 = q*(halfheight+thick_layer)*cos_alpha; 26 27 27 28 const double be1 = sas_2J1x_x(besarg1); … … 42 43 43 44 // loop for the structure factor S(q) 44 double qd_cos_alpha = d*qc;45 double qd_cos_alpha = q*d*cos_alpha; 45 46 //d*cos_alpha is the projection of d onto q (in other words the component 46 47 //of d that is parallel to q. … … 83 84 double sin_alpha, cos_alpha; // slots to hold sincos function output 84 85 SINCOS(zi, sin_alpha, cos_alpha); 85 double yyy = stacked_disks_kernel(q *sin_alpha, q*cos_alpha,86 double yyy = stacked_disks_kernel(q, 86 87 halfheight, 87 88 thick_layer, … … 92 93 layer_sld, 93 94 solvent_sld, 95 sin_alpha, 96 cos_alpha, 94 97 d); 95 98 summ += Gauss76Wt[i] * yyy * sin_alpha; … … 149 152 double phi) 150 153 { 154 int n_stacking = (int)(fp_n_stacking + 0.5); 151 155 double q, sin_alpha, cos_alpha; 152 156 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 153 const double qab = q*sin_alpha;154 const double qc = q*cos_alpha;155 157 156 int n_stacking = (int)(fp_n_stacking + 0.5);157 158 double d = 2.0 * thick_layer + thick_core; 158 159 double halfheight = 0.5*thick_core; 159 double answer = stacked_disks_kernel(q ab, qc,160 double answer = stacked_disks_kernel(q, 160 161 halfheight, 161 162 thick_layer, … … 166 167 layer_sld, 167 168 solvent_sld, 169 sin_alpha, 170 cos_alpha, 168 171 d); 169 172 -
sasmodels/models/triaxial_ellipsoid.c
r2a0b2b1 r68dd6a9 1 double form_volume(double radius_equat_minor, double radius_equat_major, double radius_polar); 2 double Iq(double q, double sld, double sld_solvent, 3 double radius_equat_minor, double radius_equat_major, double radius_polar); 4 double Iqxy(double qx, double qy, double sld, double sld_solvent, 5 double radius_equat_minor, double radius_equat_major, double radius_polar, double theta, double phi, double psi); 6 1 7 //#define INVALID(v) (v.radius_equat_minor > v.radius_equat_major || v.radius_equat_major > v.radius_polar) 2 8 3 static double 4 form_volume(double radius_equat_minor, double radius_equat_major, double radius_polar)9 10 double form_volume(double radius_equat_minor, double radius_equat_major, double radius_polar) 5 11 { 6 12 return M_4PI_3*radius_equat_minor*radius_equat_major*radius_polar; 7 13 } 8 14 9 static double 10 Iq(double q, 15 double Iq(double q, 11 16 double sld, 12 17 double sld_solvent, … … 40 45 // translate integration ranges from [-1,1] to [lower,upper] and normalize by 4 pi 41 46 const double fqsq = outer/4.0; // = outer*um*zm*8.0/(4.0*M_PI); 42 const double vol = form_volume(radius_equat_minor, radius_equat_major, radius_polar); 43 const double drho = (sld - sld_solvent); 44 return 1.0e-4 * square(vol*drho) * fqsq; 47 const double s = (sld - sld_solvent) * form_volume(radius_equat_minor, radius_equat_major, radius_polar); 48 return 1.0e-4 * s * s * fqsq; 45 49 } 46 50 47 static double 48 Iqxy(double qx, double qy, 51 double Iqxy(double qx, double qy, 49 52 double sld, 50 53 double sld_solvent, … … 58 61 double q, xhat, yhat, zhat; 59 62 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 60 const double qa = q*xhat;61 const double qb = q*yhat;62 const double qc = q*zhat;63 63 64 const double qr = sqrt(square(radius_equat_minor*qa) 65 + square(radius_equat_major*qb) 66 + square(radius_polar*qc)); 67 const double fq = sas_3j1x_x(qr); 68 const double vol = form_volume(radius_equat_minor, radius_equat_major, radius_polar); 69 const double drho = (sld - sld_solvent); 64 const double r = sqrt(square(radius_equat_minor*xhat) 65 + square(radius_equat_major*yhat) 66 + square(radius_polar*zhat)); 67 const double fq = sas_3j1x_x(q*r); 68 const double s = (sld - sld_solvent) * form_volume(radius_equat_minor, radius_equat_major, radius_polar); 70 69 71 return 1.0e-4 * square( vol * drho* fq);70 return 1.0e-4 * square(s * fq); 72 71 } 72 -
sasmodels/weights.py
rd4c33d6 rf1a8811 55 55 """ 56 56 sigma = self.width * center if relative else self.width 57 if not relative:58 # For orientation, the jitter is relative to 0 not the angle59 #center = 060 pass61 57 if sigma == 0 or self.npts < 2: 62 58 if lb <= center <= ub:
Note: See TracChangeset
for help on using the changeset viewer.