Changeset c6f3aec in sasview


Ignore:
Timestamp:
Jan 29, 2017 12:30:41 PM (8 years ago)
Author:
GitHub <noreply@…>
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
fca1f50, 2ab9c432, 0688888
Parents:
51f1c347 (diff), 1221196 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
git-author:
Paul Kienzle <pkienzle@…> (01/29/17 12:30:41)
git-committer:
GitHub <noreply@…> (01/29/17 12:30:41)
Message:

Merge pull request #32 from StevenCHowell/StevenCHowell-pr_help_typo

this fixes a transpose typo in the year

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/pr/media/pr_help.rst

    r0391dae r1221196  
    1010----------- 
    1111 
    12 This tool calculates a real-space distance distribution function, *P(r)*, using  
    13 the inversion approach (Moore, 1908). 
     12This tool calculates a real-space distance distribution function, *P(r)*, using 
     13the inversion approach (Moore, 1980). 
    1414 
    1515*P(r)* is set to be equal to an expansion of base functions of the type 
     
    2424 
    2525  \chi^2=\frac{\sum_i (I_{meas}(Q_i)-I_{th}(Q_i))^2}{error^2}+Reg\_term 
    26    
     26 
    2727 
    2828where $I_{meas}(Q_i)$ is the measured scattering intensity and $I_{th}(Q_i)$ is 
    29 the prediction from the Fourier transform of the *P(r)* expansion.  
     29the prediction from the Fourier transform of the *P(r)* expansion. 
    3030 
    31 The $Reg\_term$ term is a regularization term set to the second derivative  
     31The $Reg\_term$ term is a regularization term set to the second derivative 
    3232$d^2P(r)/d^2r$ integrated over $r$. It is used to produce a smooth *P(r)* output. 
    3333 
     
    4040 
    4141*  *Number of terms*: the number of base functions in the P(r) expansion. 
    42     
     42 
    4343*  *Regularization constant*: a multiplicative constant to set the size of 
    4444   the regularization term. 
Note: See TracChangeset for help on using the changeset viewer.