Changeset bf8c07b in sasview for src


Ignore:
Timestamp:
Apr 11, 2014 11:51:51 AM (11 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
1127c32
Parents:
92c6c36
Message:

More updates by SMK

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sans/models/media/model_functions.rst

    r990c2eb rbf8c07b  
    181181- CoreShellEllipsoidModel_ 
    182182- CoreShellEllipsoidXTModel_ 
    183 - TriaxialEllipsoidModel 
     183- TriaxialEllipsoidModel_ 
    184184 
    185185Lamellae 
     
    202202-------------- 
    203203 
    204 - ParallelepipedModel (including magnetic 2D version) 
    205 - CSParallelepipedModel 
     204- ParallelepipedModel_ (including magnetic 2D version) 
     205- CSParallelepipedModel_ 
    206206 
    207207.. _Shape-independent: 
     
    355355 
    356356REFERENCE 
     357 
    357358A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
    358359 
     
    419420 
    420421REFERENCE 
     422 
    421423N. W. Ashcroft and D. C. Langreth, *Physical Review*, 156 (1967) 685-692 
    422424[Errata found in *Phys. Rev.* 166 (1968) 934] 
     
    481483 
    482484REFERENCE 
     485 
    483486M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, *Langmuir*, 20 (2004) 7283-7292 
    484487 
     
    537540 
    538541REFERENCE 
     542 
    539543K. Larson-Smith, A. Jackson, and D.C. Pozzo, *Small angle scattering model for Pickering emulsions and raspberry* 
    540544*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41 
     
    587591 
    588592REFERENCE 
     593 
    589594A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
    590595 
     
    666671 
    667672REFERENCE 
    668 See the CoreShell documentation. 
     673 
     674See the CoreShellModel_ documentation. 
    669675 
    670676 
     
    719725 
    720726REFERENCE 
     727 
    721728S. King, P. Griffiths, J. Hone, and T. Cosgrove, *SANS from Adsorbed Polymer Layers*, 
    722729*Macromol. Symp.*, 190 (2002) 33-42 
     
    766773 
    767774REFERENCE 
     775 
    768776B. Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2, 
    769777Surfactant Science Series Vol. 22, Ed. R. Zana and M. Dekker, New York, (1987). 
     
    884892 
    885893REFERENCE 
     894 
    886895L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
    887896Plenum Press, New York, (1987). 
     
    943952 
    944953REFERENCE 
     954 
    945955A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
    946956 
     
    10711081 
    10721082REFERENCE 
     1083 
    10731084L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
    10741085Plenum Press, New York, (1987) 
     
    11161127 
    11171128REFERENCE 
     1129 
    11181130A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, *Macromol.*, 29 (1996) 2974-2979 
    11191131 
     
    11801192 
    11811193REFERENCE 
     1194 
    11821195R. Schweins and K. Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004 
    11831196 
     
    13281341 
    13291342REFERENCE 
     1343 
    13301344L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press, 
    13311345New York, (1987) 
     
    14121426 
    14131427REFERENCE 
     1428 
    14141429H. Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230 
     1430 
    14151431H. Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata) 
    14161432 
     
    15951611 
    15961612REFERENCE 
     1613 
    15971614L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum, 
    15981615New York, (1987) 
     
    16541671 
    16551672REFERENCE 
     1673 
    16561674J. S. Pedersen and P. Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume* 
    16571675*effects*. *Macromolecules*, 29 (1996) 7602-7612 
    16581676 
    16591677Correction of the formula can be found in 
     1678 
    16601679W-R Chen, P. D. Butler and L. J. Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from* 
    16611680*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548 
     
    17401759 
    17411760REFERENCE 
     1761 
    17421762J. S. Pedersen and P. Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume* 
    17431763*effects*. *Macromolecules*, 29 (1996) 7602-7612 
    17441764 
    17451765Correction of the formula can be found in 
     1766 
    17461767W-R Chen, P. D. Butler and L. J. Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from* 
    17471768*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548 
     
    18011822 
    18021823REFERENCE 
     1824 
    18031825L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press, 
    18041826New York, (1987) 
     
    18881910 
    18891911REFERENCE 
     1912 
    18901913H. Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230 
     1914 
    18911915H. Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata) 
    18921916 
     
    19731997 
    19741998REFERENCE 
     1999 
    19752000A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955 
     2001 
    19762002O. Kratky and G. Porod, *J. Colloid Science*, 4, (1949) 35 
     2003 
    19772004J. S. Higgins and H. C. Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994 
    19782005 
     
    20192046 
    20202047REFERENCE 
     2048 
    20212049S. Alexandru Rautu, Private Communication. 
    20222050 
     
    21142142 
    21152143REFERENCE 
     2144 
    21162145L. A. Feigin and D. I. Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum, 
    21172146New York, 1987. 
     
    21772206 
    21782207REFERENCE 
     2208 
    21792209M. Kotlarchyk, S.-H. Chen, *J. Chem. Phys.*, 79 (1983) 2461 
     2210 
    21802211S. J. Berr, *Phys. Chem.*, 91 (1987) 4760 
    21812212 
     
    22402271 
    22412272REFERENCE 
     2273 
    22422274R. K. Heenan, Private communication 
    22432275 
    22442276 
    22452277 
    2246 .. _TriaxialEllipsoidalModel: 
     2278.. _TriaxialEllipsoidModel: 
    22472279 
    22482280**2.1.28. TriaxialEllipsoidModel** 
     
    23142346 
    23152347REFERENCE 
     2348 
    23162349L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum, 
    23172350New York, 1987. 
     
    23662399REFERENCE 
    23672400 
    2368 Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 
    2369  
    2370 also in J. Phys. Chem. B, 105, (2001) 11081-11088. 
     2401F. Nallet, R. Laversanne, and D. Roux, J. Phys. II France, 3, (1993) 487-502 
     2402 
     2403also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    23712404 
    23722405 
     
    24232456REFERENCE 
    24242457 
    2425 Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 
    2426  
    2427 also in J. Phys. Chem. B, 105, (2001) 11081-11088. 
     2458F. Nallet, R. Laversanne, and D. Roux, J. Phys. II France, 3, (1993) 487-502 
     2459 
     2460also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    24282461 
    24292462 
     
    24932526REFERENCE 
    24942527 
    2495 Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 
    2496  
    2497 also in J. Phys. Chem. B, 105, (2001) 11081-11088. 
     2528F. Nallet, R. Laversanne, and D. Roux, J. Phys. II France, 3, (1993) 487-502 
     2529 
     2530also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    24982531 
    24992532 
     
    25742607REFERENCE 
    25752608 
    2576 Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 
    2577  
    2578 also in J. Phys. Chem. B, 105, (2001) 11081-11088. 
     2609F. Nallet, R. Laversanne, and D. Roux, J. Phys. II France, 3, (1993) 487-502 
     2610 
     2611also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    25792612 
    25802613 
     
    26432676REFERENCE 
    26442677 
    2645 M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J. 
    2646 Phys. Chem. B, 103 (1999) 9888-9897. 
     2678M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897 
    26472679 
    26482680 
     
    27052737triple integral. Very, very slow. Go get lunch. 
    27062738 
    2707 REFERENCES 
    2708  
    2709 Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. 
     2739REFERENCE 
     2740 
     2741Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
    27102742(Original Paper) 
    27112743 
    2712 Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. 
     2744Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
    27132745(Corrections to FCC and BCC lattice structure calculation) 
    27142746 
     
    27252757==============  ========  ============= 
    27262758 
    2727 TEST DATASET 
     2759 
    27282760 
    27292761This example dataset is produced using 200 data points, *qmin* = 0.01 
     
    28152847triple integral. Very, very slow. Go get lunch. 
    28162848 
    2817 REFERENCES 
    2818  
    2819 Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. 
     2849REFERENCE 
     2850 
     2851Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
    28202852(Original Paper) 
    28212853 
    2822 Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. 
     2854Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
    28232855(Corrections to FCC and BCC lattice structure calculation) 
    28242856 
     
    28352867==============  ========  ============= 
    28362868 
    2837 TEST DATASET 
    2838  
    28392869This example dataset is produced using 200 data points, *qmin* = 0.01 
    28402870-1, *qmax* = 0.1 -1 and the above default values. 
     
    29132943triple integral. Very, very slow. Go get lunch. 
    29142944 
    2915 REFERENCES 
    2916  
    2917 Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. 
     2945REFERENCE 
     2946 
     2947Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
    29182948(Original Paper) 
    29192949 
    2920 Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. 
     2950Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
    29212951(Corrections to FCC and BCC lattice structure calculation) 
    29222952 
     
    29332963==============  ========  ============= 
    29342964 
    2935 TEST DATASET 
     2965 
    29362966 
    29372967This example dataset is produced using 200 data points, *qmin* = 0.001 
     
    29682998**2.1.37. ParallelepipedModel** 
    29692999 
    2970 This model provides the form factor, *P(q)*, for a rectangular 
    2971 cylinder (below) where the form factor is normalized by the volume of 
    2972 the cylinder. P(q) = scale*<f^2>/V+background where the volume V= ABC 
    2973 and the averaging < > is applied over all orientation for 1D. 
     3000This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by 
     3001the volume of the cylinder. 
     3002 
     3003*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background* 
     3004 
     3005where the volume *V* = *A B C* and the averaging < > is applied over all orientations for 1D. 
    29743006 
    29753007For information about polarised and magnetic scattering, click here_. 
    29763008 
    2977  
    2978  
    2979  
    2980  
    2981 The side of the solid must be satisfied the condition of A<B 
    2982  
    2983 By this definition, assuming 
    2984  
    2985 a = A/B<1; b=B/B=1; c=C/B>1, the form factor, 
    2986  
    2987  
    2988  
    2989 The contrast is defined as 
    2990  
    2991  
    2992  
    2993 The scattering intensity per unit volume is returned in the unit of 
    2994 |cm^-1|; I(q) = fP(q). 
    2995  
    2996 For P*S: The 2nd virial coefficient of the solid cylinder is calculate 
    2997 based on the averaged effective radius (= sqrt(short_a*short_b/pi)) 
    2998 and length( = long_c) values, and used as the effective radius toward 
    2999 S(Q) when P(Q)*S(Q) is applied. 
    3000  
    3001 To provide easy access to the orientation of the parallelepiped, we 
    3002 define the axis of the cylinder using two angles , andY. Similarly to 
    3003 the case of the cylinder, those angles, and , are defined on Figure 2 
    3004 of CylinderModel. The angle Y is the rotational angle around its own 
    3005 long_c axis against the q plane. For example, Y = 0 when the short_b 
    3006 axis is parallel to the x-axis of the detector. 
    3007  
    3008  
     3009.. image:: img/image087.JPG 
     3010 
     3011*2.1.37.1. Definition* 
     3012 
     3013**The edge of the solid must satisfy the condition that** *A* < *B*. Then, assuming *a* = *A* / *B* < 1, 
     3014*b* = *B* / *B* = 1, and *c* = *C* / *B* > 1, the form factor is 
     3015 
     3016.. image:: img/image088.PNG 
     3017 
     3018and the contrast is defined as 
     3019 
     3020.. image:: img/image089.PNG 
     3021 
     3022The scattering intensity per unit volume is returned in units of |cm^-1|; ie, *I(q)* = |phi| *P(q)*\ . 
     3023 
     3024NB: The 2nd virial coefficient of the parallelpiped is calculated based on the the averaged effective radius 
     3025(= sqrt(*short_a* \* *short_b* / |pi|)) and length(= *long_c*) values, and used as the effective radius for 
     3026*S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     3027 
     3028To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles 
     3029|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the 
     3030rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is 
     3031parallel to the *x*-axis of the detector. 
     3032 
     3033.. image:: img/image090.JPG 
    30093034 
    30103035*Figure. Definition of angles for 2D*. 
    30113036 
    3012  
    3013  
    3014 Figure. Examples of the angles for oriented pp against the detector 
    3015 plane. 
     3037.. image:: img/image091.JPG 
     3038 
     3039*Figure. Examples of the angles for oriented pp against the detector plane.* 
    30163040 
    30173041==============  ========  ============= 
     
    30263050==============  ========  ============= 
    30273051 
    3028  
     3052.. image:: img/image092.JPG 
    30293053 
    30303054*Figure. 1D plot using the default values (w/1000 data point).* 
    30313055 
    3032 *Validation of the parallelepiped 2D model* 
    3033  
    3034 Validation of our code was done by comparing the output of the 1D 
    3035 calculation to the angular average of the output of 2 D calculation 
    3036 over all possible angles. The Figure below shows the comparison where 
    3037 the solid dot refers to averaged 2D while the line represents the 
    3038 result of 1D calculation (for the averaging, 76, 180, 76 points are 
    3039 taken over the angles of theta, phi, and psi respectively). 
    3040  
    3041  
     3056*2.1.37.2. Validation of the parallelepiped 2D model* 
     3057 
     3058Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of 
     3059a 2D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged 
     30602D while the line represents the result of the 1D calculation (for the averaging, 76, 180, 76 points are taken for the 
     3061angles of |theta|, |phi|, and |psi| respectively). 
     3062 
     3063.. image:: img/image093.GIF 
    30423064 
    30433065*Figure. Comparison between 1D and averaged 2D.* 
    30443066 
    3045 Our model uses the form factor calculations implemented in a c-library 
    3046 provided by the NIST Center for Neutron Research (Kline, 2006): 
    3047  
    3048 REFERENCE 
    3049  
    3050 Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. 
    3051  
     3067Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 
     3068(Kline, 2006). 
     3069 
     3070REFERENCE 
     3071 
     3072P. Mittelbach and G. Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
    30523073Equations (1), (13-14). (in German) 
    30533074 
     
    30583079**2.1.38. CSParallelepipedModel** 
    30593080 
    3060 Calculates the form factor for a rectangular solid with a core-shell 
    3061 structure. The thickness and the scattering length density of the 
    3062 shell or "rim" can be different on all three (pairs) of faces. The 
    3063 form factor is normalized by the particle volume such that P(q) = 
    3064 scale*<f^2>/Vol + bkg, where < > is an average over all possible 
    3065 orientations of the rectangular solid. An instrument resolution 
    3066 smeared version is also provided. 
    3067  
    3068 The function calculated is the form factor of the rectangular solid 
    3069 below. The core of the solid is defined by the dimensions ABC such 
    3070 that A < B < C. 
    3071  
    3072  
    3073  
    3074 There are rectangular "slabs" of thickness tA that add to the A 
    3075 dimension (on the BC faces). There are similar slabs on the AC (=tB) 
    3076 and AB (=tC) faces. The projection in the AB plane is then: 
    3077  
    3078  
    3079  
    3080 The volume of the solid is: 
    3081  
    3082  
    3083  
    3084 meaning that there are "gaps" at the corners of the solid. 
    3085  
    3086 The intensity calculated follows the parallelepiped model, with the 
    3087 core-shell intensity being calculated as the square of the sum of the 
    3088 amplitudes of the core and shell, in the same manner as a core-shell 
    3089 sphere. 
    3090  
    3091 For the calculation of the form factor to be valid, the sides of the 
    3092 solid MUST be chosen such that A < B < C. If this inequality in not 
    3093 satisfied, the model will not report an error, and the calculation 
    3094 will not be correct. 
    3095  
    3096 FITTING NOTES: 
    3097  
    3098 If the scale is set equal to the particle volume fraction, f, the 
    3099 returned value is the scattered intensity per unit volume, I(q) = 
    3100 f*P(q). However, no interparticle interference effects are included in 
    3101 this calculation. 
    3102  
    3103 There are many parameters in this model. Hold as many fixed as 
    3104 possible with known values, or you will certainly end up at a solution 
    3105 that is unphysical. 
    3106  
    3107 Constraints must be applied during fitting to ensure that the 
    3108 inequality A < B < C is not violated. The calculation will not report 
    3109 an error, but the results will not be correct. 
     3081Calculates the form factor for a rectangular solid with a core-shell structure. **The thickness and the scattering** 
     3082**length density of the shell or "rim" can be different on all three (pairs) of faces.** 
     3083 
     3084The form factor is normalized by the particle volume *V* such that 
     3085 
     3086*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background* 
     3087 
     3088where < > is an average over all possible orientations of the rectangular solid. 
     3089 
     3090An instrument resolution smeared version of the model is also provided. 
     3091 
     3092*2.1.38.1. Definition* 
     3093 
     3094The function calculated is the form factor of the rectangular solid below. The core of the solid is defined by the 
     3095dimensions *A*, *B*, *C* such that *A* < *B* < *C*. 
     3096 
     3097.. image:: img/image087.JPG 
     3098 
     3099There are rectangular "slabs" of thickness *tA* that add to the *A* dimension (on the *BC* faces). There are similar 
     3100slabs on the *AC* (= *tB*) and *AB* (= *tC*) faces. The projection in the *AB* plane is then 
     3101 
     3102.. image:: img/image094.JPG 
     3103 
     3104The volume of the solid is 
     3105 
     3106.. image:: img/image095.PNG 
     3107 
     3108**meaning that there are "gaps" at the corners of the solid.** 
     3109 
     3110The intensity calculated follows the ParallelepipedModel_, with the core-shell intensity being calculated as the 
     3111square of the sum of the amplitudes of the core and shell, in the same manner as a CoreShellModel_. 
     3112 
     3113**For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such that** *A* < *B* < *C*. 
     3114**If this inequality is not satisfied, the model will not report an error, and the calculation will not be correct.** 
     3115 
     3116FITTING NOTES 
     3117If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per 
     3118unit volume; ie, *I(q)* = |phi| *P(q)*\ . However, **no interparticle interference effects are included in this** 
     3119**calculation.** 
     3120 
     3121There are many parameters in this model. Hold as many fixed as possible with known values, or you will certainly end 
     3122up at a solution that is unphysical. 
     3123 
     3124Constraints must be applied during fitting to ensure that the inequality *A* < *B* < *C* is not violated. The 
     3125calculation will not report an error, but the results will not be correct. 
    31103126 
    31113127The returned value is in units of |cm^-1|, on absolute scale. 
    31123128 
    3113 For P*S: The 2nd virial coefficient of this CSPP is calculate based on 
    3114 the averaged effective radius (= 
    3115 sqrt((short_a+2*rim_a)*(short_b+2*rim_b)/pi)) and length( = 
    3116 long_c+2*rim_c) values, and used as the effective radius toward S(Q) 
    3117 when P(Q)*S(Q) is applied. 
    3118  
    3119 To provide easy access to the orientation of the CSparallelepiped, we 
    3120 define the axis of the cylinder using two angles , andY. Similarly to 
    3121 the case of the cylinder, those angles, and , are defined on Figure 2 
    3122 of CylinderModel. The angle Y is the rotational angle around its own 
    3123 long_c axis against the q plane. For example, Y = 0 when the short_b 
    3124 axis is parallel to the x-axis of the detector. 
    3125  
    3126  
     3129NB: The 2nd virial coefficient of the CSParallelpiped is calculated based on the the averaged effective radius 
     3130(= sqrt((*short_a* + 2 *rim_a*) \* (*short_b* + 2 *rim_b*) / |pi|)) and length(= *long_c* + 2 *rim_c*) values, and 
     3131used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     3132 
     3133To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles 
     3134|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the 
     3135rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is 
     3136parallel to the *x*-axis of the detector. 
     3137 
     3138.. image:: img/image090.JPG 
    31273139 
    31283140*Figure. Definition of angles for 2D*. 
    31293141 
    3130  
    3131  
    3132 Figure. Examples of the angles for oriented cspp against the detector 
    3133 plane. 
    3134  
    3135 TEST DATASET 
    3136  
    3137 This example dataset is produced by running the Macro 
    3138 Plot_CSParallelepiped(), using 100 data points, *qmin* = 0.001 |Ang^-1|, *qmax* 
    3139 = 0.7 -1 and the below default values. 
     3142.. image:: img/image091.JPG 
     3143 
     3144*Figure. Examples of the angles for oriented cspp against the detector plane.* 
     3145 
     3146This example dataset was produced by running the Macro Plot_CSParallelepiped(), using 100 data points, 
     3147*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values 
    31403148 
    31413149==============  ========  ============= 
     
    31573165==============  ========  ============= 
    31583166 
    3159  
     3167.. image:: img/image096.JPG 
    31603168 
    31613169*Figure. 1D plot using the default values (w/256 data points).* 
    31623170 
    3163  
    3164  
    3165  
    3166  
    3167 *Figure. 2D plot using the default values (w/(256X265) data 
    3168 points).* 
    3169  
    3170 Our model uses the form factor calculations implemented in a c-library 
    3171 provided by the NIST Center for Neutron Research (Kline, 2006): 
    3172  
    3173 REFERENCE 
    3174  
    3175 see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. 
    3176  
    3177 Equations (1), (13-14). (yes, it's in German) 
     3171.. image:: img/image097.JPG 
     3172 
     3173*Figure. 2D plot using the default values (w/(256X265) data points).* 
     3174 
     3175Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 
     3176(Kline, 2006). 
     3177 
     3178REFERENCE 
     3179 
     3180P. Mittelbach and G. Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
     3181Equations (1), (13-14). (in German) 
    31783182 
    31793183 
     
    32303234 
    32313235 
    3232 Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in 
    3233 Polymer Science", Oxford University Press, New York (2000). 
     3236REFERENCE 
     3237 
     3238R. J. Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000). 
    32343239 
    32353240*3.2. BroadPeak Model* 
     
    33073312 
    33083313 
    3309 Reference: None. 
     3314REFERENCE 
     3315 
     3316*None* 
    33103317 
    331133182013/09/09 - Description reviewed by King, S. and Parker, P. 
     
    33803387REFERENCE 
    33813388 
    3382 B. Hammouda, D.L. Ho and S.R. Kline, Insight into Clustering in 
    3383 Poly(ethylene oxide) Solutions, Macromolecules 37, 6932-6937 (2004). 
     3389B. Hammouda, D.L. Ho and S.R. Kline, *Insight into Clustering in Poly(ethylene oxide) Solutions*, 
     3390*Macromolecules*, 37 (2004) 6932-6937 
    33843391 
    338533922013/09/09 - Description reviewed by King, S. and Parker, P. 
     
    34873494REFERENCE 
    34883495 
    3489 Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid. 
    3490 II. The Correlation Function and its Application", J. Appl. Phys. 28 
    3491 (6), 679 (1957). 
    3492  
    3493  
    3494  
    3495 Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys. 
    3496 20, 518 (1949). 
     3496Debye, Bueche, *Scattering by an Inhomogeneous Solid*, *J. Appl. Phys.*, 20 (1949) 518 
     3497 
     3498Debye, Anderson, Brumberger, *Scattering by an Inhomogeneous Solid. II. The Correlation Function and its Application*, 
     3499*J. Appl. Phys.*, 28(6), (1957) 679 
    34973500 
    349835012013/09/09 - Description reviewed by King, S. and Parker, P. 
     
    35933596REFERENCE 
    35943597 
    3595 Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987). 
     3598Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987) 
    35963599 
    35973600 
     
    40954098 
    40964099 
    4097 REFERENCE: 
     4100REFERENCE 
    40984101 
    40994102G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42 
     
    41804183 
    41814184Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de 
    4182 Physique II France 
    4183  
    4184 3, 573 (1993). 
     4185Physique II France, 3, 573 (1993). 
    41854186 
    41864187Raphal, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990). 
     
    43754376Parameters I0, B, qpk, and BGD can all be adjusted during fitting. 
    43764377 
    4377 REFERENCE: None 
     4378REFERENCE 
     4379 
     4380*None* 
    43784381 
    43794382For 2D plot, the wave transfer is defined as . 
     
    44324435The parameters I0, B, qpk, and BGD can all be adjusted during fitting. 
    44334436 
    4434 REFERENCE: None 
     4437REFERENCE 
     4438 
     4439*None* 
    44354440 
    44364441For 2D plot, the wave transfer is defined as . 
     
    44984503For 2D plot, the wave transfer is defined as . 
    44994504 
    4500 TEST DATASET 
     4505 
    45014506 
    45024507This example dataset is produced by running the Poly_GaussCoil, using 
     
    45424547 
    45434548 
    4544 Reference: 
     4549REFERENCE 
    45454550 
    45464551Glatter & Kratky - pg.404. 
    45474552 
    4548 J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford 
    4549 Science 
    4550  
    4551 Publications (1996). 
     4553J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996). 
    45524554 
    45534555*3.21. PolymerExclVolume (Model)* 
     
    46194621Benoit, H., Comptes Rendus (1957). 245, 2244-2247. 
    46204622 
    4621 Hammouda, B., SANS from Homogeneous Polymer Mixtures A Unified 
    4622 Overview, Advances in Polym. Sci. (1993), 106, 87-133. 
     4623Hammouda, B., SANS from Homogeneous Polymer Mixtures A Unified Overview, Advances in Polym. Sci. (1993), 106, 87-133. 
    46234624 
    46244625For 2D plot, the wave transfer is defined as . 
    46254626 
    4626 TEST DATASET 
     4627 
    46274628 
    46284629This example dataset is produced, using 200 data points, *qmin* = 0.001 
     
    48844885 
    48854886 
    4886 *REFERENCE: None* 
     4887REFERENCE 
     4888 
     4889*None* 
    48874890 
    48884891*3.24. TwoPowerLaw(Model)* 
     
    52585261 
    52595262REFERENCE 
     5263 
    52605264H. Benoit, J. Polymer Science., 11, 596-599 (1953) 
    52615265 
     
    52995303 
    53005304REFERENCE 
     5305 
    53015306J. K. Percus, J. Yevick, *J. Phys. Rev.*, 110, (1958) 1 
    53025307 
     
    53415346 
    53425347REFERENCE 
     5348 
    53435349R. V. Sharma, K. C. Sharma, *Physica*, 89A (1977) 213 
    53445350 
     
    53815387 
    53825388REFERENCE 
     5389 
    53835390J. B. Hayter and J. Penfold, *Molecular Physics*, 42 (1981) 109-118 
     5391 
    53845392J. P. Hansen and J. B. Hayter, *Molecular Physics*, 46 (1982) 651-656 
    53855393 
     
    54365444 
    54375445REFERENCE 
     5446 
    54385447S. V. G. Menon, C. Manohar, and K. S. Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190 
    54395448 
Note: See TracChangeset for help on using the changeset viewer.