Changes in / [1e7b202a:bc1dac6] in sasmodels
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/pd/polydispersity.rst
r29afc50 rd712a0f 20 20 P(q) = \text{scale} \langle F^* F \rangle / V + \text{background} 21 21 22 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 23 average over the size distribution. 22 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 23 average over the size distribution $f(x; \bar x, \sigma)$, giving 24 25 .. math:: 26 27 P(q) = \frac{\text{scale}}{V} \int_\mathbb{R} 28 f(x; \bar x, \sigma) F^2(q, x)\, dx + \text{background} 24 29 25 30 Each distribution is characterized by a center value $\bar x$ or … … 41 46 with larger values of $N_\sigma$ required for heavier tailed distributions. 42 47 The scattering in general falls rapidly with $qr$ so the usual assumption 43 that $ G(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)G(r - 3\sigma_r)$48 that $f(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)f(r - 3\sigma_r)$ 44 49 will not contribute much to the average may not hold when particles are large. 45 50 This, too, will require increasing $N_\sigma$. … … 63 68 64 69 Additional distributions are under consideration. 70 71 .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace 72 the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), 73 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ 74 in order to make the terminology describing distributions of properties 75 unambiguous. Throughout the SasView documentation we continue to use the 76 term polydispersity because one of the consequences of the IUPAC change is 77 that orientational polydispersity would not meet their new criteria (which 78 requires dispersity to be dimensionless). 65 79 66 80 Suggested Applications
Note: See TracChangeset
for help on using the changeset viewer.