Changes in / [6e5c0b7:b6e0636] in sasmodels


Ignore:
Location:
sasmodels/models
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/ellipsoid.py

    r3b571ae r4b0a294  
    161161def ER(radius_polar, radius_equatorial): 
    162162    import numpy as np 
    163  
     163# see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449 
    164164    ee = np.empty_like(radius_polar) 
    165165    idx = radius_polar > radius_equatorial 
  • sasmodels/models/triaxial_ellipsoid.py

    r28d3067 r4b0a294  
    1616    \frac{X^2}{R_a^2} + \frac{Y^2}{R_b^2} + \frac{Z^2}{R_c^2} = 1 
    1717 
    18 the scattering is defined by the average over all orientations $\Omega$, 
     18the scattering for randomly oriented particles is defined by the average over all orientations $\Omega$ of: 
    1919 
    2020.. math:: 
    2121 
    22     P(q) = \text{scale}\frac{V}{4 \pi}\int_\Omega \Phi^2(qr) d\Omega + \text{background} 
     22    P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega \Phi^2(qr) d\Omega + \text{background} 
    2323 
    2424where 
     
    7979The radius-of-gyration for this system is  $R_g^2 = (R_a R_b R_c)^2/5$. 
    8080 
    81 The contrast is defined as SLD(ellipsoid) - SLD(solvent).  In the 
     81The contrast $\Delta\rho$ is defined as SLD(ellipsoid) - SLD(solvent).  In the 
    8282parameters, $R_a$ is the minor equatorial radius, $R_b$ is the major 
    8383equatorial radius, and $R_c$ is the polar radius of the ellipsoid. 
     
    102102*Light scattering by ellipsoidal particles in solution*, 
    103103J. Phys. D: Appl. Phys. 4, 72-77. doi:10.1088/0022-3727/4/1/310 
     104 
     105Authorship and Verification 
     106---------------------------- 
     107 
     108* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
     109* **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017 
     110* **Last Reviewed by:** Paul Kienzle &Richard Heenan **Date:**  April 4, 2017 
    104111 
    105112""" 
     
    144151    import numpy as np 
    145152    from .ellipsoid import ER as ellipsoid_ER 
     153     # now that radii can be in any size order, radii need sorting a,b,c where a~b and c is either much smaller or much larger 
     154     # also need some unit tests! 
     155     
    146156    return ellipsoid_ER(radius_polar, np.sqrt(radius_equat_minor * radius_equat_major)) 
    147157 
Note: See TracChangeset for help on using the changeset viewer.