Changes in / [6c6aa83:b39debba] in sasview
- Location:
- src/sas
- Files:
-
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/data_util/qsmearing.py
r345e7e4 rd3911e3 41 41 elif data.dqx_data == None or data.dqy_data == None: 42 42 return None 43 return P inhole2D(data)43 return PySmear2D(data, model) 44 44 45 45 if not hasattr(data, "dx") and not hasattr(data, "dxl")\ … … 142 142 width = data.dx if data.dx is not None else 0 143 143 return PySmear(Pinhole1D(q, width), model) 144 145 146 class PySmear2D(object): 147 """ 148 Q smearing class for SAS 2d pinhole data 149 """ 150 151 def __init__(self, data=None, model=None): 152 self.data = data 153 self.model = model 154 self.accuracy = 'Low' 155 self.limit = 3.0 156 self.index = None 157 self.coords = 'polar' 158 self.smearer = True 159 160 def set_accuracy(self, accuracy='Low'): 161 """ 162 Set accuracy. 163 164 :param accuracy: string 165 """ 166 self.accuracy = accuracy 167 168 def set_smearer(self, smearer=True): 169 """ 170 Set whether or not smearer will be used 171 172 :param smearer: smear object 173 174 """ 175 self.smearer = smearer 176 177 def set_data(self, data=None): 178 """ 179 Set data. 180 181 :param data: DataLoader.Data_info type 182 """ 183 self.data = data 184 185 def set_model(self, model=None): 186 """ 187 Set model. 188 189 :param model: sas.models instance 190 """ 191 self.model = model 192 193 def set_index(self, index=None): 194 """ 195 Set index. 196 197 :param index: 1d arrays 198 """ 199 self.index = index 200 201 def get_value(self): 202 """ 203 Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, 204 then find smeared intensity 205 """ 206 if self.smearer: 207 res = Pinhole2D(data=self.data, index=self.index, 208 nsigma=3.0, accuracy=self.accuracy, 209 coords=self.coords) 210 val = self.model.evalDistribution(res.q_calc) 211 return res.apply(val) 212 else: 213 index = self.index if self.index is not None else slice(None) 214 qx_data = self.data.qx_data[index] 215 qy_data = self.data.qy_data[index] 216 q_calc = [qx_data, qy_data] 217 val = self.model.evalDistribution(q_calc) 218 return val 219 -
src/sas/sascalc/fit/AbstractFitEngine.py
r345e7e4 rd3911e3 359 359 if self.smearer != None: 360 360 fn.set_index(self.idx) 361 # Get necessary data from self.data and set the data for smearing362 fn.get_data()363 364 361 gn = fn.get_value() 365 362 else: -
src/sas/sasgui/guiframe/gui_manager.py
r62243ae r62243ae 1995 1995 wx.PostEvent(self, 1996 1996 StatusEvent(status="Completed saving.")) 1997 except :1997 except Exception: 1998 1998 msg = "Error occurred while saving: " 1999 msg += traceback.format_exc() 1999 2000 msg += "To save, the application panel should have a data set.." 2000 2001 wx.PostEvent(self, StatusEvent(status=msg)) … … 2045 2046 logging.warning(msg) 2046 2047 wx.PostEvent(self, StatusEvent(status=msg, info="error")) 2047 except :2048 except Exception: 2048 2049 msg = "Error occurred while saving: " 2050 msg += traceback.format_exc() 2049 2051 msg += "To save, at least one application panel " 2050 2052 msg += "should have a data set.." -
src/sas/sasgui/perspectives/fitting/basepage.py
r345e7e4 rd3911e3 1041 1041 disp_model = POLYDISPERSITY_MODELS['array']() 1042 1042 if hasattr(state, "values") and \ 1043 self.disp_cb_dict[item].GetValue() is True:1043 self.disp_cb_dict[item].GetValue(): 1044 1044 if len(state.values) > 0: 1045 1045 self.values = state.values … … 1541 1541 index_data = ((self.qmin_x <= self.data.x) & 1542 1542 (self.data.x <= self.qmax_x)) 1543 val = self.data.x[index_data is True] 1544 val = len(val) if isinstance(val, list) else 1 1545 self.Npts_fit.SetValue(str(val)) 1546 1543 val = str(len(self.data.x[index_data])) 1544 self.Npts_fit.SetValue(val) 1547 1545 else: 1548 1546 # No data in the panel … … 2147 2145 flag = False 2148 2146 else: 2149 self.Npts_fit.SetValue(str(len(index_data[index_data is True])))2147 self.Npts_fit.SetValue(str(len(index_data[index_data]))) 2150 2148 self.fitrange = True 2151 2149 … … 2182 2180 flag = False 2183 2181 else: 2184 val = index_data[index_data is True] 2185 val = len(val) if isinstance(val, list) else 1 2186 self.Npts_fit.SetValue(str(val)) 2182 self.Npts_fit.SetValue(str(len(index_data[index_data]))) 2187 2183 self.fitrange = True 2188 2184 … … 2628 2624 Layout after self._draw_model 2629 2625 """ 2630 if ON_MAC is True:2626 if ON_MAC: 2631 2627 time.sleep(1) 2632 2628 -
src/sas/sasgui/perspectives/fitting/fitpage.py
r345e7e4 r24fd27a 1618 1618 return 1619 1619 # check if it is pinhole smear and get min max if it is. 1620 if data.dx is not None and n ot numpy.any(data.dx):1620 if data.dx is not None and numpy.any(data.dx): 1621 1621 self.smear_type = "Pinhole" 1622 1622 self.dq_l = data.dx[0] -
src/sas/sasgui/perspectives/fitting/model_thread.py
r286c757 rc1681ea 82 82 fn.set_model(self.model) 83 83 fn.set_index(index_model) 84 # Get necessary data from self.data and set the data for smearing85 fn.get_data()86 84 # Calculate smeared Intensity 87 85 #(by Gaussian averaging): DataLoader/smearing2d/Smearer2D() … … 89 87 else: 90 88 # calculation w/o smearing 91 value = self.model.evalDistribution(\ 92 [self.data.qx_data[index_model], 93 self.data.qy_data[index_model]]) 89 value = self.model.evalDistribution([ 90 self.data.qx_data[index_model], 91 self.data.qy_data[index_model] 92 ]) 94 93 output = numpy.zeros(len(self.data.qx_data)) 95 94 # output default is None … … 198 197 output[index] = self.model.evalDistribution(self.data.x[index]) 199 198 200 sq_model = None 201 pq_model = None 199 sq_values = None 200 pq_values = None 201 s_model = None 202 p_model = None 202 203 if isinstance(self.model, MultiplicationModel): 203 sq_model = numpy.zeros((len(self.data.x))) 204 pq_model = numpy.zeros((len(self.data.x))) 205 sq_model[index] = self.model.s_model.evalDistribution(self.data.x[index]) 206 pq_model[index] = self.model.p_model.evalDistribution(self.data.x[index]) 204 s_model = self.model.s_model 205 p_model = self.model.p_model 206 elif hasattr(self.model, "get_composition_models"): 207 p_model, s_model = self.model.get_composition_models() 208 209 if p_model is not None and s_model is not None: 210 sq_values = numpy.zeros((len(self.data.x))) 211 pq_values = numpy.zeros((len(self.data.x))) 212 sq_values[index] = s_model.evalDistribution(self.data.x[index]) 213 pq_values[index] = p_model.evalDistribution(self.data.x[index]) 207 214 208 215 elapsed = time.time() - self.starttime … … 221 228 unsmeared_data=unsmeared_data, 222 229 unsmeared_error=unsmeared_error, 223 pq_model=pq_ model,224 sq_model=sq_ model)230 pq_model=pq_values, 231 sq_model=sq_values) 225 232 226 233 def results(self):
Note: See TracChangeset
for help on using the changeset viewer.