Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/polymer_excl_volume.py

    r2d81cfe raa90015  
    1717$a$ is the statistical segment length of the polymer chain, 
    1818and $n$ is the degree of polymerization. 
    19 This integral was later put into an almost analytical form as follows 
     19 
     20This integral was put into an almost analytical form as follows 
    2021(Hammouda, 1993) 
     22 
     23.. math:: 
     24 
     25    P(Q)=\frac{1}{\nu U^{1/2\nu}} 
     26    \left\{ 
     27        \gamma\left(\frac{1}{2\nu},U\right) - 
     28        \frac{1}{U^{1/2\nu}}\gamma\left(\frac{1}{\nu},U\right) 
     29    \right\} 
     30 
     31and later recast as (for example, Hore, 2013; Hammouda & Kim, 2017) 
    2132 
    2233.. math:: 
     
    2940.. math:: 
    3041 
    31     \gamma(x,U)=\int_0^{U}dt\ exp(-t)t^{x-1} 
     42    \gamma(x,U)=\int_0^{U}dt\ \exp(-t)t^{x-1} 
    3243 
    3344and the variable $U$ is given in terms of the scattering vector $Q$ as 
     
    3748    U=\frac{Q^2a^2n^{2\nu}}{6} = \frac{Q^2R_{g}^2(2\nu+1)(2\nu+2)}{6} 
    3849 
     50The two analytic forms are equivalent. In the 1993 paper 
     51 
     52.. math:: 
     53 
     54    \frac{1}{\nu U^{1/2\nu}} 
     55 
     56has been factored out. 
     57 
     58**SasView implements the 1993 expression**. 
     59 
    3960The square of the radius-of-gyration is defined as 
    4061 
     
    4364    R_{g}^2 = \frac{a^2n^{2\nu}}{(2\nu+1)(2\nu+2)} 
    4465 
    45 Note that this model applies only in the mass fractal range (ie, $5/3<=m<=3$ ) 
    46 and **does not apply** to surface fractals ( $3<m<=4$ ). 
    47 It also does not reproduce the rigid rod limit (m=1) because it assumes chain 
    48 flexibility from the outset. It may cover a portion of the semi-flexible chain 
    49 range ( $1<m<5/3$ ). 
     66.. note:: 
     67    This model applies only in the mass fractal range (ie, $5/3<=m<=3$ ) 
     68    and **does not apply** to surface fractals ( $3<m<=4$ ). 
     69    It also does not reproduce the rigid rod limit (m=1) because it assumes chain 
     70    flexibility from the outset. It may cover a portion of the semi-flexible chain 
     71    range ( $1<m<5/3$ ). 
    5072 
    5173A low-Q expansion yields the Guinier form and a high-Q expansion yields the 
     
    7395.. math:: 
    7496 
    75     P(Q) = \frac{2}{Q^4R_{g}^4} \left[exp(-Q^2R_{g}^2) - 1 + Q^2R_{g}^2 \right] 
     97    P(Q) = \frac{2}{Q^4R_{g}^4} \left[\exp(-Q^2R_{g}^2) - 1 + Q^2R_{g}^2 \right] 
    7698 
    7799For 2D data: The 2D scattering intensity is calculated in the same way as 1D, 
     
    89111 
    90112B Hammouda, *SANS from Homogeneous Polymer Mixtures - A Unified Overview, 
    91 Advances in Polym. Sci.* 106(1993) 87-133 
     113Advances in Polym. Sci.* 106 (1993) 87-133 
     114 
     115M Hore et al, *Co-Nonsolvency of Poly(n-isopropylacrylamide) in Deuterated 
     116Water/Ethanol Mixtures* 46 (2013) 7894-7901 
     117 
     118B Hammouda & M-H Kim, *The empirical core-chain model* 247 (2017) 434-440 
    92119""" 
    93120 
     
    124151    with errstate(divide='ignore', invalid='ignore'): 
    125152        upow = power(usub, -0.5*porod_exp) 
     153        # Note: scipy gammainc is "regularized", being gamma(s,x)/Gamma(s), 
     154        # so need to scale by Gamma(s) to recover gamma(s, x). 
    126155        result = (porod_exp*upow * 
    127156                  (gamma(0.5*porod_exp)*gammainc(0.5*porod_exp, usub) - 
Note: See TracChangeset for help on using the changeset viewer.