Changes in / [5fd684d:9acade6] in sasmodels


Ignore:
Location:
sasmodels
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/sasview_model.py

    r3bcb88c r9c1a59c  
    565565        parameters = self._model_info.parameters 
    566566        pairs = [self._get_weights(p) for p in parameters.call_parameters] 
     567        #weights.plot_weights(self._model_info, pairs) 
    567568        call_details, values, is_magnetic = make_kernel_args(calculator, pairs) 
    568569        #call_details.show() 
     
    618619            # remember them is kind of funky. 
    619620            # Note: can't seem to get disperser parameters from sasview 
    620             # (1) Could create a sasview model that has not yet # been 
     621            # (1) Could create a sasview model that has not yet been 
    621622            # converted, assign the disperser to one of its polydisperse 
    622623            # parameters, then retrieve the disperser parameters from the 
    623             # sasview model.  (2) Could write a disperser parameter retriever 
    624             # in sasview.  (3) Could modify sasview to use sasmodels.weights 
    625             # dispersers. 
     624            # sasview model. 
     625            # (2) Could write a disperser parameter retriever in sasview. 
     626            # (3) Could modify sasview to use sasmodels.weights dispersers. 
    626627            # For now, rely on the fact that the sasview only ever uses 
    627628            # new dispersers in the set_dispersion call and create a new 
    628629            # one instead of trying to assign parameters. 
    629             dispersion = weights.MODELS[dispersion.type]() 
    630630            self.dispersion[parameter] = dispersion.get_pars() 
    631631        else: 
     
    658658        elif par.polydisperse: 
    659659            dis = self.dispersion[par.name] 
    660             value, weight = weights.get_weights( 
    661                 dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 
    662                 self.params[par.name], par.limits, par.relative_pd) 
     660            if dis['type'] == 'array': 
     661                value, weight = dis['values'], dis['weights'] 
     662            else: 
     663                value, weight = weights.get_weights( 
     664                    dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 
     665                    self.params[par.name], par.limits, par.relative_pd) 
    663666            return value, weight / np.sum(weight) 
    664667        else: 
  • sasmodels/weights.py

    rfa800e72 r6cefbc9  
    33""" 
    44# TODO: include dispersion docs with the disperser models 
     5from __future__ import division, print_function 
     6 
    57from math import sqrt  # type: ignore 
     8from collections import OrderedDict 
     9 
    610import numpy as np  # type: ignore 
    711from scipy.special import gammaln  # type: ignore 
     
    5458            else: 
    5559                return np.array([], 'd'), np.array([], 'd') 
    56         return self._weights(center, sigma, lb, ub) 
     60        x, px = self._weights(center, sigma, lb, ub) 
     61        return x, px 
    5762 
    5863    def _weights(self, center, sigma, lb, ub): 
     
    7984    default = dict(npts=35, width=0, nsigmas=3) 
    8085    def _weights(self, center, sigma, lb, ub): 
     86        # TODO: sample high probability regions more densely 
     87        # i.e., step uniformly in cumulative density rather than x value 
     88        # so weight = 1/Npts for all weights, but values are unevenly spaced 
    8189        x = self._linspace(center, sigma, lb, ub) 
    8290        px = np.exp((x-center)**2 / (-2.0 * sigma * sigma)) 
     
    165173 
    166174    def _weights(self, center, sigma, lb, ub): 
    167         # TODO: interpolate into the array dispersion using npts 
    168         x = center + self.values*sigma 
     175        # TODO: rebin the array dispersion using npts 
     176        # TODO: use a distribution that can be recentered and scaled 
     177        x = self.values 
     178        #x = center + self.values*sigma 
    169179        idx = (x >= lb) & (x <= ub) 
    170180        x = x[idx] 
     
    174184 
    175185# dispersion name -> disperser lookup table. 
    176 MODELS = dict((d.type, d) for d in ( 
    177     GaussianDispersion, RectangleDispersion, 
    178     ArrayDispersion, SchulzDispersion, LogNormalDispersion 
     186# Maintain order since this is used by sasview GUI to order the options in 
     187# the dispersion type combobox. 
     188MODELS = OrderedDict((d.type, d) for d in ( 
     189    RectangleDispersion, 
     190    ArrayDispersion, 
     191    LogNormalDispersion, 
     192    GaussianDispersion, 
     193    SchulzDispersion, 
    179194)) 
    180195 
     
    194209    *value* is the value of the parameter in the model. 
    195210 
    196     *limits* is [lb, ub], the lower and upper bound of the weight value. 
     211    *limits* is [lb, ub], the lower and upper bound on the possible values. 
    197212 
    198213    *relative* is true if *width* is defined in proportion to the value 
     
    201216    Returns *(value, weight)*, where *value* and *weight* are vectors. 
    202217    """ 
     218    if disperser == "array": 
     219        raise NotImplementedError("Don't handle arrays through get_weights; use values and weights directly") 
    203220    cls = MODELS[disperser] 
    204221    obj = cls(n, width, nsigmas) 
    205222    v, w = obj.get_weights(value, limits[0], limits[1], relative) 
    206223    return v, w 
     224 
     225 
     226def plot_weights(model_info, pairs): 
     227    # type: (ModelInfo, List[Tuple[np.ndarray, np.ndarray]]) -> None 
     228    """ 
     229    Plot the weights returned by :func:`get_weights`. 
     230 
     231    *model_info* is 
     232    :param model_info: 
     233    :param pairs: 
     234    :return: 
     235    """ 
     236    import pylab 
     237 
     238    if any(len(values)>1 for values, weights in pairs): 
     239        labels = [p.name for p in model_info.parameters.call_parameters] 
     240        pylab.interactive(True) 
     241        pylab.figure() 
     242        for (v,w), s in zip(pairs, labels): 
     243            if len(v) > 1: 
     244                #print("weights for", s, v, w) 
     245                pylab.plot(v, w, '-o', label=s) 
     246        pylab.grid(True) 
     247        pylab.legend() 
Note: See TracChangeset for help on using the changeset viewer.