Changes in / [dd4f5ed:9644b5a] in sasmodels
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
deploy.sh
r2ba5ba5 r9d1e3e4 1 if [ "$encrypted_cb04388797b6_iv"]1 if [[ $encrypted_cb04388797b6_iv ]] 2 2 then 3 3 eval "$(ssh-agent -s)" -
sasmodels/models/fractal_core_shell.py
rca04add r8f04da4 22 22 \frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3}+ 23 23 3V_s(\rho_s-\rho_{solv}) 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 \\ 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 25 25 26 S(q) &= 1 + \frac{D_f\ \Gamma\!(D_f-1)}{[1+1/(q\xi)^2]^{(D_f-1)/2}} 26 27 \frac{\sin[(D_f-1)\tan^{-1}(q\xi)]}{(qr_s)^{D_f}} -
sasmodels/models/mass_surface_fractal.py
rca04add r232bb12 22 22 .. math:: 23 23 24 I(q) = scale \times P(q) + background \\ 24 I(q) = scale \times P(q) + background 25 25 26 P(q) = \left\{ \left[ 1+(q^2a)\right]^{D_m/2} \times 26 27 \left[ 1+(q^2b)\right]^{(6-D_s-D_m)/2} 27 \right\}^{-1} \\ 28 a = R_{g}^2/(3D_m/2) \\ 29 b = r_{g}^2/[-3(D_s+D_m-6)/2] \\ 28 \right\}^{-1} 29 30 a = R_{g}^2/(3D_m/2) 31 32 b = r_{g}^2/[-3(D_s+D_m-6)/2] 33 30 34 scale = scale\_factor \times NV^2 (\rho_{particle} - \rho_{solvent})^2 31 35 -
sasmodels/models/mono_gauss_coil.py
rca04add r404ebbd 24 24 25 25 I_0 &= \phi_\text{poly} \cdot V 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 \\ 27 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 28 Z &= (q R_g)^2 \\ 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 27 28 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 29 30 Z &= (q R_g)^2 31 29 32 V &= M / (N_A \delta) 30 33 -
sasmodels/models/onion.py
rca04add rbccb40f 81 81 \left[ B\exp 82 82 \left(A (r - r_{\text{shell}-1}) / \Delta t_\text{shell} \right) + C 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\ 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r 84 84 85 &= 3BV(r_\text{shell}) e^A h(\alpha_\text{out},\beta_\text{out}) 85 86 - 3BV(r_{\text{shell}-1}) h(\alpha_\text{in},\beta_\text{in}) … … 94 95 \begin{align*} 95 96 B&=\frac{\rho_\text{out} - \rho_\text{in}}{e^A-1} 96 & 97 &C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\ 97 98 \alpha_\text{in} &= A\frac{r_{\text{shell}-1}}{\Delta t_\text{shell}} 98 & 99 &\alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\ 99 100 \beta_\text{in} &= qr_{\text{shell}-1} 100 & 101 &\beta_\text{out} &= qr_\text{shell} \\ 101 102 \end{align*} 102 103 -
sasmodels/models/parallelepiped.py
rca04add r30b60d2 62 62 \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right] 63 63 S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right] 64 \right\}^2 du \\ 65 S(x) &= \frac{\sin x}{x} \\ 64 \right\}^2 du 65 66 S(x) &= \frac{\sin x}{x} 67 66 68 \mu &= qB 67 69 … … 131 133 .. math:: 132 134 133 \cos\alpha &= \hat A \cdot \hat q, \\ 134 \cos\beta &= \hat B \cdot \hat q, \\ 135 \cos\alpha &= \hat A \cdot \hat q, 136 137 \cos\beta &= \hat B \cdot \hat q, 138 135 139 \cos\gamma &= \hat C \cdot \hat q 136 140 -
sasmodels/models/poly_gauss_coil.py
rca04add r404ebbd 21 21 .. math:: 22 22 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\ 24 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\ 25 Z &= [(q R_g)^2] / (1 + 2U) \\ 26 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\ 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 24 25 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] 26 27 Z &= [(q R_g)^2] / (1 + 2U) 28 29 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 30 27 31 V &= M / (N_A \delta) 28 32 -
sasmodels/models/polymer_micelle.py
rca04add r404ebbd 26 26 27 27 .. math:: 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) \\ 29 \beta_s = v\_core(sld\_core - sld\_solvent) \\ 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) 29 30 \beta_s = v\_core(sld\_core - sld\_solvent) 31 30 32 \beta_c = v\_corona(sld\_corona - sld\_solvent) 31 33 … … 39 41 .. math:: 40 42 41 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 43 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 44 42 45 Z &= (q R_g)^2 43 46 … … 47 50 .. math:: 48 51 49 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \\ 50 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 \\ 52 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} 53 54 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 55 51 56 \psi(Z)=\frac{[1-exp^{-Z}]}{Z} 52 57 -
sasmodels/models/spherical_sld.py
rca04add r2ad5d30 51 51 3 \rho_\text{core} V(r_\text{core}) 52 52 \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} 53 {qr_\text{core}^3} \Big] \\ 53 {qr_\text{core}^3} \Big] 54 54 55 f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 55 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr \\ 56 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr 57 56 58 f_{\text{shell}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 57 59 \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = … … 64 66 -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i }) 65 67 \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} 66 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] \\ 68 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] 69 67 70 f_\text{solvent} &= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} 68 71 \frac{\sin(qr)} {qr} r^2 dr = … … 119 122 4 \pi \sum_{j=1}^{n_\text{steps}} 120 123 \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) 121 \frac{\sin(qr)} {qr} r^2 dr \\ 122 \approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 124 \frac{\sin(qr)} {qr} r^2 dr 125 126 &\approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 123 127 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 124 128 ( r_{j} ) V (r_j) 125 129 \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) 126 130 - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } 127 {\beta_\text{out}^4 } \Big] \\ 128 {} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 131 {\beta_\text{out}^4 } \Big] 132 133 &{} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 129 134 ( r_{j} ) V ( r_{j-1} ) 130 135 \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) 131 136 - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } 132 {\beta_\text{in}^4 } \Big] \\ 133 {} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 137 {\beta_\text{in}^4 } \Big] 138 139 &{} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 134 140 \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } 135 141 {\beta_\text{out}^4 } \Big] … … 146 152 \begin{align*} 147 153 V(a) &= \frac {4\pi}{3}a^3 && \\ 148 a_\text{in} \sim \frac{r_j}{r_{j+1} -r_j} \text{, } &a_\text{out}149 \sim \frac{r_{j+1}}{r_{j+1} -r_j} \\150 \beta_\text{in} &= qr_j \text{, } & 154 a_\text{in} &\sim \frac{r_j}{r_{j+1} -r_j} \text{, } &a_\text{out} 155 &\sim \frac{r_{j+1}}{r_{j+1} -r_j} \\ 156 \beta_\text{in} &= qr_j \text{, } &\beta_\text{out} &= qr_{j+1} 151 157 \end{align*} 152 158 -
sasmodels/models/star_polymer.py
r5da1ac8 r30b60d2 36 36 Star polymers in solutions tend to have strong interparticle and osmotic 37 37 effects. Thus the Benoit equation may not work well for many real cases. 38 A newer model for star polymer incorporating excluded volume has been 39 developed by Li et al in arXiv:1404.6269 [physics.chem-ph]. Also, at small 40 $q$ the scattering, i.e. the Guinier term, is not sensitive to the number of 41 arms, and hence 'scale' here is simply $I(q=0)$ as described for the 42 :ref:`mono-gauss-coil` model, using volume fraction $\phi$ and volume V 43 for the whole star polymer. 38 At small $q$ the Guinier term and hence $I(q=0)$ is the same as for $f$ arms 39 of radius of gyration $R_g$, as described for the :ref:`mono-gauss-coil` 40 model. A newer model for star polymer incorporating excluded volume has been 41 developed by Li et al in arXiv:1404.6269 [physics.chem-ph]. 44 42 45 43 References
Note: See TracChangeset
for help on using the changeset viewer.