Changes in / [aba7b40:96032b3] in sasview


Ignore:
Location:
src/sas/perspectives/calculator/media
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • src/sas/perspectives/calculator/media/resolution_calculator_help.rst

    r850c753 rbc9a0e1  
    2323------ 
    2424 
    25 1) Select *SAS Resolution Estimator* from the *Tool* menu on the SasView toolbar. 
     251) Select *SAS Resolution Esimator* from the *Tool* menu on the SasView toolbar. 
    2626 
    27272) Select the source (Neutron or Photon) and source type (Monochromatic or TOF). 
     
    3333   careful to note that distances are specified in cm! 
    3434 
    35 4) Enter values for the source wavelength(s), |lambda|\ , and its spread (= FWHM/|lambda|\ ). 
     354) Enter values for the source wavelength(s) and its spread (= FWHM / wavelength). 
    3636    
    3737   For monochromatic sources, the inputs are just one value. For TOF sources,  
     
    6262   region near the beam block/stop  
    6363 
    64    [ie., Q < 2. |pi|\ .(beam block diameter) / (sample-to-detector distance) / |lambda|\_min]  
     64   [ie., Q < 2*|pi|\*(beam block diameter) / (sample-to-detector distance) / |lambda|\_min]  
    6565 
    6666   the variance is slightly under estimated. 
  • src/sas/perspectives/calculator/media/sas_calculator_help.rst

    r850c753 rec392464  
    1717================================== 
    1818 
    19 Nuclear_Scattering_ 
     19Polarization and Magnetic Scattering 
    2020 
    21 Magnetic_Scattering_Polarisation_ 
    22  
    23 Using_the_SAS_Calculator_GUI_ 
    24  
    25 Using_PDB_Data_ 
     21Theory_  
     22GUI_  
     23PDB_Data_  
    2624 
    2725.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    2826 
    29 .. _Nuclear_Scattering: 
     27.. _Theory: 
    3028 
    31 Nuclear Scattering 
    32 ------------------ 
     29Theory 
     30------ 
    3331 
    34 In general, a particle with a volume *V* can be described by an ensemble  
    35 containing *N* 3-dimensional rectangular pixels where each pixel is much  
    36 smaller than *V*. 
    37  
    38 Assuming that all the pixel sizes are the same, the elastic scattering  
    39 intensity from the particle is 
     32In general, a particle with a volume V can be described by an ensemble  
     33containing N 3-dimensional rectangular pixels where each pixels are much  
     34smaller than V. Assuming that all the pixel sizes are same, the elastic  
     35scattering intensity by the particle 
    4036 
    4137.. image:: gen_i.gif 
    4238 
    43 Equation 1. 
    44  
    45 where |beta|\ :sub:`j` and *r*\ :sub:`j` are the scattering length density and  
    46 the position of the j'th pixel respectively. 
    47  
    48 The total volume *V* 
     39where /beta/jand rj are the scattering length density and the position of the  
     40j'th pixel respectively. And the total volume 
    4941 
    5042.. image:: v_j.gif 
    5143 
    52 for |beta|\ :sub:`j` |noteql|\0 where *v*\ :sub:`j` is the volume of the j'th  
    53 pixel (or the j'th natural atomic volume (= atomic mass / (natural molar  
    54 density * Avogadro number) for the atomic structures). 
    55  
    56 *V* can be corrected by users. This correction is useful especially for an  
    57 atomic structure (such as taken from a PDB file) to get the right normalization.  
    58  
    59 *NOTE!* |beta|\ :sub:`j` *displayed in the GUI may be incorrect but this will not  
    60 affect the scattering computation if the correction of the total volume V is made.* 
    61  
    62 The scattering length density (SLD) of each pixel, where the SLD is uniform, is  
    63 a combination of the nuclear and magnetic SLDs and depends on the spin states  
    64 of the neutrons as follows. 
    65  
    66 .. _Magnetic_Scattering_Polarisation: 
    67  
    68 Magnetic Scattering & Polarisation 
    69 ---------------------------------- 
    70  
    71 For magnetic scattering, only the magnetization component, *M*\ :sub:`perp`\ ,  
    72 perpendicular to the scattering vector *Q* contributes to the magnetic  
    73 scattering length. 
     44for /beta/j/noteql/0 where vj is the volume of the j'th pixel (or the j'th  
     45natural atomic volume (= atomic mass/natural molar density/Avogadro number) for  
     46the atomic structures). The total volume V can be corrected by users. This  
     47correction is useful especially for an atomic structure (taken from a pdb file)  
     48to get the right normalization. Note that the /beta/j displayed in GUI may be  
     49incorrect but will not affect the scattering computation if the correction of  
     50the total volume is made. The scattering length density (SLD) of each pixel  
     51where the SLD is uniform, is a combination of the nuclear and magnetic SLDs and  
     52depends on the spin states of the neutrons as follows:For magnetic scattering,  
     53only the magnetization component, *M*perp, perpendicular to the scattering  
     54vector *Q* contributes to the the magnetic scattering length. (Figure below). 
    7455 
    7556.. image:: mag_vector.bmp 
     
    7960.. image:: dm_eq.gif 
    8061 
    81 where the gyromagnetic ratio |gamma| = -1.913, |mu|\ :sub:`B` is the Bohr  
    82 magneton, *r*\ :sub:`0` is the classical radius of electron, and |sigma| is the  
    83 Pauli spin. 
     62where /gamma/= -1.913 the gyromagnetic ratio, /mu/B is the Bohr magneton, r0 is  
     63the classical radius of electron, and */sigma/* is the Pauli spin. 
    8464 
    85 For a polarized neutron, the magnetic scattering is depending on the spin states. 
     65For polarized neutron, the magnetic scattering is depending on the spin states. 
    8666 
    87 Let us consider that the incident neutrons are polarised both parallel (+) and  
    88 anti-parallel (-) to the x' axis (see below). The possible states after  
    89 scattering from the sample are then  
     67Let's consider that the incident neutrons are polarised parallel (+)/  
     68anti-parallel (-) to the x' axis (See both Figures above). The possible  
     69out-coming states then are + and - states for both incident states, where  
    9070 
    91 * Non-spin flips: (+ +) and (- -) 
    92 * Spin flips:     (+ -) and (- +) 
     71- Non-spin flips: (+ +) and (- -) 
     72- Spin flips:     (+ -) and (- +) 
    9373 
    9474.. image:: gen_mag_pic.bmp 
    9575 
    96 Now let us assume that the angles of the *Q* vector and the spin-axis (x')  
    97 to the x-axis are |phi| and |theta|\ :sub:`up` respectively (see above). Then,  
     76Now, let's assume that the angles of the *Q* vector and the spin-axis (x')  
     77from x-axis are /phi/ and /theta/up respectively (See Figure above). Then,  
    9878depending upon the polarization (spin) state of neutrons, the scattering  
    99 length densities, including the nuclear scattering length density (|beta|\ :sub:`N`\ )  
    100 are given as 
     79length densities, including the nuclear scattering length density (/beta/N)  
     80are given as, for non-spin-flips 
    10181 
    102 *  for non-spin-flips 
     82.. image:: sld1.gif 
    10383 
    104    .. image:: sld1.gif 
     84and for spin-flips 
    10585 
    106 *  for spin-flips 
    107  
    108    .. image:: sld2.gif 
     86.. image:: sld2.gif 
    10987 
    11088where 
     
    12098.. image:: mqy.gif 
    12199 
    122 Here the *M0*\ :sub:`x`\ , *M0*\ :sub:`y` and *M0*\ :sub:`z` are the x, y and z  
    123 components of the magnetisation vector in the laboratory xyz frame.  
     100Here, the M0x, M0yand M0zare the x, y and z components of the magnetisation  
     101vector given in the xyz lab frame.  
    124102 
    125103.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    126104 
    127 .. _Using_the_SAS_Calculator_GUI: 
     105.. _GUI: 
    128106 
    129 Using the SAS Calculator GUI 
    130 ---------------------------- 
     107GUI 
     108--- 
    131109 
    132110.. image:: gen_gui_help.bmp 
    133111 
    134 After computation the result will appear in the *Theory* box in the SasView   
    135 *Data Explorer* panel. 
     112After the computation, the result will be listed in the 'Theory' box in the  
     113data explorer panel on the main window.The 'Up_frac_in' and 'Up_frac_out' are  
     114the ratio, (spin up) /(spin up + spin down) neutrons before the sample and at  
     115the analyzer, respectively. 
    136116 
    137 *Up_frac_in* and *Up_frac_out* are the ratio  
     117*Note I: The values of 'Up_frac_in' and 'Up_frac_out' must be in the range  
     118between 0 and 1. For example, both values are 0.5 for unpolarized neutrons.* 
    138119 
    139    (spin up) / (spin up + spin down) 
    140    
    141 of neutrons before the sample and at the analyzer, respectively. 
     120*Note II: This computation is totally based on the pixel (or atomic) data  
     121fixed in the xyz coordinates. Thus no angular orientational averaging is  
     122considered.* 
    142123 
    143 *NOTE 1. The values of* Up_frac_in *and* Up_frac_out *must be in the range  
    144 0.0 to 1.0. Both values are 0.5 for unpolarized neutrons.* 
    145  
    146 *NOTE 2. This computation is totally based on the pixel (or atomic) data fixed  
    147 in xyz coordinates. No angular orientational averaging is considered.* 
    148  
    149 *NOTE 3. For the nuclear scattering length density, only the real component  
     124*Note III: For the nuclear scattering length density, only the real component  
    150125is taken account.* 
    151126 
    152127.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    153128 
    154 .. _Using_PDB_Data: 
     129.. _PDB_Data: 
    155130 
    156 Using PDB Data 
    157 -------------- 
     131PDB Data 
     132-------- 
    158133 
    159 The SAS Calculator tool can read some PDB, OMF or SLD files but ignores  
    160 polarized/magnetic scattering when doing so, thus related parameters such as  
    161 *Up_frac_in*, etc, will be ignored. 
    162  
    163 The calculation for fixed orientation uses Equation 1 above resulting in a 2D  
    164 output, whereas the scattering calculation averaged over all the orientations  
    165 uses the Debye equation below providing a 1D output 
     134This Generic scattering calculator also supports some pdb files without  
     135considering polarized/magnetic scattering so that the related parameters  
     136such as Up_*** will be ignored (see the Picture below). The calculation for  
     137fixed orientation uses (the first) Equation above resulting in a 2D output,  
     138whileas the scattering calculation averaged over all the orientations uses  
     139the Debye equation providing a 1D output 
    166140 
    167141.. image:: gen_debye_eq.gif 
    168142 
    169 where *v*\ :sub:`j` |beta|\ :sub:`j` |equiv| *b*\ :sub:`j` is the scattering  
    170 length of the j'th atom. The calculation output is passed to the *Data Explorer*  
    171 for further use. 
     143where vj /beta/j /equiv/ bj the scattering length of the j'th atom. The resultant outputs  
     144will be displayed in the DataExplorer for further uses. 
    172145 
    173146.. image:: pdb_combo.jpg 
    174  
    175 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    176  
    177 .. note::  This help document was last changed by Steve King, 19Feb2015 
  • src/sas/perspectives/calculator/media/sld_calculator_help.rst

    r850c753 rec392464  
    1414The neutron scattering length density is defined as 
    1515 
    16   SLD = (b_c1 + b_c2 + ... + b_cn) / Vm 
     16SLD = (b_c1 + b_c2 + ... + b_cn) / Vm 
    1717 
    1818where  
     
    3131Entering a wavelength value is optional (a default value of 6.0 |Ang| will  
    3232be used). 
    33  
    34 TIPS! 
    3533 
    3634*  Formula strings consist of atoms and the number of them, such as "CaCO3+6H2O". 
     
    5452*  Type "C[13]6 H[2]12 O[18]6" for C(13)6H(2)12O(18)6 (6 Carbon-13 atoms, 12  
    5553   deuterium atoms, and 6 Oxygen-18 atoms). 
    56     
    57 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    58  
    59 .. note::  This help document was last changed by Steve King, 19Feb2015 
    60  
Note: See TracChangeset for help on using the changeset viewer.