Changes in / [1a580fb:94d13f1] in sasmodels
- Location:
- sasmodels
- Files:
-
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/conversion_table.py
rbb584b3 rfa6d6fc 5 5 names for each parameter in sasmodels. This is used by :mod:`convert` to 6 6 determine the equivalent parameter set when comparing a sasmodels model to 7 the models defined in previous versions of SasView and sasmodels. This is now 8 versioned based on the version number of SasView. 9 10 When any sasmodels parameter or model name is changed, this must be modified to 11 account for that. 12 13 Usage: 14 <old_Sasview_version> : { 15 <new_model_name> : [ 16 <old_model_name> , 17 { 18 <new_param_name_1> : <old_param_name_1>, 19 ... 20 <new_param_name_n> : <old_param_name_n> 21 } 22 ] 23 } 24 25 Any future parameter and model name changes can and should be given in this 26 table for future compatibility. 7 the models defined in SasView 3.1. 27 8 """ 28 9 10 29 11 CONVERSION_TABLE = { 30 (3,1,2) : {31 12 "adsorbed_layer": [ 32 13 "Core2ndMomentModel", … … 230 211 ], 231 212 "correlation_length": [ 232 "CorrLength ",213 "CorrLengthModel", 233 214 { 234 215 "porod_scale": "scale_p", … … 237 218 "lorentz_exp": "exponent_l", 238 219 "cor_length": "length_l" 239 }, 240 "CorrLengthModel" 220 } 241 221 ], 242 222 "cylinder": [ … … 319 299 ], 320 300 "fractal_core_shell": [ 321 "FractalCoreShell ",301 "FractalCoreShellModel", 322 302 { 323 303 "sld_core": "core_sld", … … 329 309 "cor_length": "cor_length", 330 310 "volfraction": "volfraction", 331 }, 332 "FractalCoreShellModel" 311 } 333 312 ], 334 313 "fuzzy_sphere": [ … … 342 321 ], 343 322 "gauss_lorentz_gel": [ 344 "GaussLorentzGel ",323 "GaussLorentzGelModel", 345 324 { 346 325 "gauss_scale": "scale_g", … … 349 328 "background": "background", 350 329 "lorentz_scale": "scale_l" 351 }, 352 "GaussLorentzGelModel" 330 } 353 331 ], 354 332 "gaussian_peak": [ 355 "Peak GaussModel",333 "PeakGaussModel", 356 334 { 357 335 "peak_pos": "q0", 358 336 "sigma": "B", 359 }, 360 "PeakGaussModel", 337 } 361 338 ], 362 339 "gel_fit": [ … … 366 343 "lorentz_scale": "lScale", 367 344 "guinier_scale": "gScale", 368 "fractal_dim": " FractalExp",345 "fractal_dim": "scale", 369 346 "cor_length": "zeta", 370 347 } 371 348 ], 372 349 "guinier": [ 373 "Guinier ",350 "GuinierModel", 374 351 { 375 352 "rg": "rg" 376 }, 377 "GuinierModel", 353 } 378 354 ], 379 355 "guinier_porod": [ 380 "GuinierPorod ",356 "GuinierPorodModel", 381 357 { 382 358 "s": "dim", … … 385 361 "scale": "scale", 386 362 "background": "background" 387 }, 388 "GuinierPorodModel", 363 } 389 364 ], 390 365 "hardsphere": [ … … 479 454 "d_spacing": "spacing", 480 455 "Caille_parameter": "caille", 481 "Nlayers": " n_plates",456 "Nlayers": "N_plates", 482 457 } 483 458 ], … … 511 486 ], 512 487 "lorentz": [ 513 "Lorentz ",488 "LorentzModel", 514 489 { 515 490 "cor_length": "length" 516 }, 517 "LorentzModel", 491 } 518 492 ], 519 493 "mass_fractal": [ … … 536 510 ], 537 511 "mono_gauss_coil": [ 538 "Debye ",512 "DebyeModel", 539 513 { 540 514 "rg": "rg", 541 515 "i_zero": "scale", 542 516 "background": "background", 543 }, 544 "DebyeModel", 517 } 545 518 ], 546 519 "multilayer_vesicle": [ … … 591 564 ], 592 565 "peak_lorentz": [ 593 "Peak LorentzModel",566 "PeakLorentzModel", 594 567 { 595 568 "peak_pos": "q0", 596 569 "peak_hwhm": "B" 597 }, 598 "PeakLorentzModel", 570 } 599 571 ], 600 572 "pearl_necklace": [ … … 830 802 ], 831 803 "two_lorentzian": [ 832 "TwoLorentzian ",804 "TwoLorentzianModel", 833 805 { 834 806 "lorentz_scale_1": "scale_1", … … 839 811 "lorentz_length_1": "length_1", 840 812 "background": "background" 841 }, 842 "TwoLorentzianModel", 813 } 843 814 ], 844 815 "two_power_law": [ 845 "TwoPowerLaw ",816 "TwoPowerLawModel", 846 817 { 847 818 "coefficent_1": "coef_A", … … 850 821 "background": "background", 851 822 "crossover": "qc" 852 }, 853 "TwoPowerLawModel", 823 } 854 824 ], 855 825 "unified_power_Rg": [ 856 "UnifiedPowerRg",857 dict(((field_new+str(index), field_old+str(index))858 for field_new, field_old in [("rg", "Rg"),859 ("power", "power"),860 ("G", "G"),861 ("B", "B"),]862 for index in range(11)),863 **{864 "background": "background",865 "scale": "scale",866 }),867 826 "UnifiedPowerRgModel", 827 { 828 } 868 829 ], 869 830 "vesicle": [ … … 874 835 } 875 836 ] 876 }877 837 } -
sasmodels/convert.py
r07c8d46 rf80f334 53 53 ("_pd_nsigma", ".nsigmas"), 54 54 ("_pd_type", ".type"), 55 (".lower", ".lower"),56 (".upper", ".upper"),57 (".fittable", ".fittable"),58 (".std", ".std"),59 (".units", ".units"),60 ("", "")61 55 ] 62 56 … … 70 64 if id.startswith('M0:'): 71 65 return True 66 if id.startswith('volfraction') or id.startswith('radius_effective'): 67 return False 72 68 if '_pd' in id or '.' in id: 73 69 return False … … 79 75 if p.id == id: 80 76 return p.type == 'sld' 81 r eturn False77 raise ValueError("unknown parameter %r in conversion"%id) 82 78 83 79 def _rescale_sld(model_info, pars, scale): … … 92 88 93 89 94 def _get_translation_table(model_info , version=(3,1,2)):95 conv_param = CONVERSION_TABLE.get(version, {}).get(model_info.id, [None, {}])96 translation = conv_param[1].copy()90 def _get_translation_table(model_info): 91 _, translation = CONVERSION_TABLE.get(model_info.id, [None, {}]) 92 translation = translation.copy() 97 93 for p in model_info.parameters.kernel_parameters: 98 94 if p.length > 1: … … 123 119 def _pd_to_underscores(pars): 124 120 return dict((_dot_pd_to_underscore_pd(k), v) for k, v in pars.items()) 121 122 def _convert_name(conv_dict, pars): 123 """ 124 Renames parameter values (upper, lower, etc) to v4.0 names 125 :param conv_dict: conversion dictionary mapping new name : old name 126 :param pars: parameters to convert 127 :return: 128 """ 129 new_pars = {} 130 i = 0 131 j = 0 132 for key_par, value_par in pars.iteritems(): 133 j += 1 134 for key_conv, value_conv in conv_dict.iteritems(): 135 if re.search(value_conv, key_par): 136 new_pars[key_par.replace(value_conv, key_conv)] = value_par 137 i += 1 138 break 139 elif re.search("background", key_par) or re.search("scale", key_par): 140 new_pars[key_par] = value_par 141 i += 1 142 break 143 if i != j: 144 new_pars[key_par] = value_par 145 i += 1 146 return new_pars 125 147 126 148 def _convert_pars(pars, mapping): … … 145 167 return newpars 146 168 147 def _conversion_target(model_name, version=(3,1,2)): 169 170 def _conversion_target(model_name): 148 171 """ 149 172 Find the sasmodel name which translates into the sasview name. … … 153 176 two variants in sasview. 154 177 """ 155 for sasmodels_name, sasview_dict in \ 156 CONVERSION_TABLE.get(version, {}).items(): 157 if sasview_dict[0] == model_name: 178 for sasmodels_name, [sasview_name, _] in CONVERSION_TABLE.items(): 179 if sasview_name == model_name: 158 180 return sasmodels_name 159 181 return None 160 182 161 def _hand_convert(name, oldpars, version=(3,1,2)): 162 if version == (3,1,2): 163 oldpars = _hand_convert_3_1_2_to_4_1(name, oldpars) 164 return oldpars 165 166 def _hand_convert_3_1_2_to_4_1(name, oldpars): 183 184 def _hand_convert(name, oldpars): 167 185 if name == 'core_shell_parallelepiped': 168 186 # Make sure pd on rim parameters defaults to zero … … 197 215 pd = oldpars['radius.width']*oldpars['radius']/thickness 198 216 oldpars['radius.width'] = pd 199 elif name == 'multilayer_vesicle':200 if 'scale' in oldpars:201 oldpars['volfraction'] = oldpars['scale']202 oldpars['scale'] = 1.0203 if 'scale.lower' in oldpars:204 oldpars['volfraction.lower'] = oldpars['scale.lower']205 if 'scale.upper' in oldpars:206 oldpars['volfraction.upper'] = oldpars['scale.upper']207 if 'scale.fittable' in oldpars:208 oldpars['volfraction.fittable'] = oldpars['scale.fittable']209 if 'scale.std' in oldpars:210 oldpars['volfraction.std'] = oldpars['scale.std']211 if 'scale.units' in oldpars:212 oldpars['volfraction.units'] = oldpars['scale.units']213 217 elif name == 'pearl_necklace': 214 218 pass … … 232 236 oldpars[p + ".upper"] /= 1e-13 233 237 elif name == 'spherical_sld': 234 j = 0 235 while "func_inter" + str(j) in oldpars: 236 name = "func_inter" + str(j) 237 new_name = "shape" + str(j + 1) 238 if oldpars[name] == 'Erf(|nu|*z)': 239 oldpars[new_name] = int(0) 240 elif oldpars[name] == 'RPower(z^|nu|)': 241 oldpars[new_name] = int(1) 242 elif oldpars[name] == 'LPower(z^|nu|)': 243 oldpars[new_name] = int(2) 244 elif oldpars[name] == 'RExp(-|nu|*z)': 245 oldpars[new_name] = int(3) 246 elif oldpars[name] == 'LExp(-|nu|*z)': 247 oldpars[new_name] = int(4) 248 else: 249 oldpars[new_name] = int(0) 250 oldpars.pop(name) 251 oldpars['n_shells'] = str(j + 1) 252 j += 1 238 oldpars["CONTROL"] += 1 253 239 elif name == 'teubner_strey': 254 240 # basically undoing the entire Teubner-Strey calculations here. … … 295 281 return oldpars 296 282 297 def convert_model(name, pars, use_underscore=False , model_version=(3,1,2)):283 def convert_model(name, pars, use_underscore=False): 298 284 """ 299 285 Convert model from old style parameter names to new style. 300 286 """ 301 newpars = pars 302 keys = sorted(CONVERSION_TABLE.keys()) 303 for i, version in enumerate(keys): 304 # Don't allow indices outside list 305 next_i = i + 1 306 if next_i == len(keys): 307 next_i = i 308 # If the save state is from a later version, skip the check 309 if model_version <= keys[next_i]: 310 newname = _conversion_target(name, version) 311 else: 312 newname = None 313 # If no conversion is found, move on 314 if newname is None: 315 newname = name 316 continue 317 if ':' in newname: # core_shell_ellipsoid:1 318 model_info = load_model_info(newname[:-2]) 319 # Know the table exists and isn't multiplicity so grab it directly 320 # Can't use _get_translation_table since that will return the 'bare' 321 # version. 322 translation = CONVERSION_TABLE.get(version, {})[newname][1] 323 else: 324 model_info = load_model_info(newname) 325 translation = _get_translation_table(model_info, version) 326 newpars = _hand_convert(newname, newpars, version) 327 newpars = _convert_pars(newpars, translation) 328 # TODO: Still not convinced this is the best check 329 if not model_info.structure_factor and version == (3,1,2): 330 newpars = _rescale_sld(model_info, newpars, 1e6) 331 newpars.setdefault('scale', 1.0) 332 newpars.setdefault('background', 0.0) 333 if use_underscore: 334 newpars = _pd_to_underscores(newpars) 335 name = newname 287 newname = _conversion_target(name) 288 if newname is None: 289 return name, pars 290 if ':' in newname: # core_shell_ellipsoid:1 291 model_info = load_model_info(newname[:-2]) 292 # Know that the table exists and isn't multiplicity so grab it directly 293 # Can't use _get_translation_table since that will return the 'bare' 294 # version. 295 translation = CONVERSION_TABLE[newname][1] 296 else: 297 model_info = load_model_info(newname) 298 translation = _get_translation_table(model_info) 299 newpars = _hand_convert(newname, pars.copy()) 300 newpars = _convert_name(translation, newpars) 301 newpars = _convert_pars(newpars, translation) 302 if not model_info.structure_factor: 303 newpars = _rescale_sld(model_info, newpars, 1e6) 304 newpars.setdefault('scale', 1.0) 305 newpars.setdefault('background', 0.0) 306 if use_underscore: 307 newpars = _pd_to_underscores(newpars) 336 308 return newname, newpars 309 337 310 338 311 # ========= BACKWARD CONVERSION sasmodels => sasview 3.x =========== -
sasmodels/kernelcl.py
rb8ddf2e r7fcdc9f 465 465 # architectures tested so far. 466 466 if self.is_2d: 467 # Note: 16 rather than 15 because result is 1 longer than input. 468 width = ((self.nq+16)//16)*16 467 # Note: 17 rather than 15 because results is 2 elements 468 # longer than input. 469 width = ((self.nq+17)//16)*16 469 470 self.q = np.empty((width, 2), dtype=dtype) 470 471 self.q[:self.nq, 0] = q_vectors[0] 471 472 self.q[:self.nq, 1] = q_vectors[1] 472 473 else: 473 # Note: 32 rather than 31 because result is 1 longer than input. 474 width = ((self.nq+32)//32)*32 474 # Note: 33 rather than 31 because results is 2 elements 475 # longer than input. 476 width = ((self.nq+33)//32)*32 475 477 self.q = np.empty(width, dtype=dtype) 476 478 self.q[:self.nq] = q_vectors[0] … … 522 524 self.dim = '2d' if q_input.is_2d else '1d' 523 525 # plus three for the normalization values 524 self.result = np.empty(q_input.nq+ 1, dtype)526 self.result = np.empty(q_input.nq+3, dtype) 525 527 526 528 # Inputs and outputs for each kernel call -
sasmodels/models/core_shell_bicelle.py
r8afefae r4b541ac 156 156 phi=0) 157 157 158 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0)158 qx, qy = 0.4 * cos(90), 0.5 * sin(0) -
sasmodels/models/core_shell_bicelle_elliptical.py
r8afefae r8e68ea0 83 83 84 84 Definition of the angles for the oriented core_shell_bicelle_elliptical model. 85 Note that *theta* and *phi* are currently defined differently to those for the core_shell_bicelle model.86 85 87 86 … … 150 149 psi=0) 151 150 152 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0)151 qx, qy = 0.4 * cos(90), 0.5 * sin(0) 153 152 154 153 tests = [ -
sasmodels/models/ellipsoid.c
r130d4c7 r925ad6e 4 4 double radius_polar, double radius_equatorial, double theta, double phi); 5 5 6 static double 7 _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double cos_alpha)6 double _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double sin_alpha); 7 double _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double sin_alpha) 8 8 { 9 9 double ratio = radius_polar/radius_equatorial; 10 // Using ratio v = Rp/Re, we can expand the following to match the 11 // form given in Guinier (1955) 12 // r = Re * sqrt(1 + cos^2(T) (v^2 - 1)) 13 // = Re * sqrt( (1 - cos^2(T)) + v^2 cos^2(T) ) 14 // = Re * sqrt( sin^2(T) + v^2 cos^2(T) ) 15 // = sqrt( Re^2 sin^2(T) + Rp^2 cos^2(T) ) 16 // 10 // Given the following under the radical: 11 // 1 + sin^2(T) (v^2 - 1) 12 // we can expand to match the form given in Guinier (1955) 13 // = (1 - sin^2(T)) + v^2 sin^2(T) = cos^2(T) + sin^2(T) 17 14 // Instead of using pythagoras we could pass in sin and cos; this may be 18 15 // slightly better for 2D which has already computed it, but it introduces … … 20 17 // leave it as is. 21 18 const double r = radius_equatorial 22 * sqrt(1.0 + cos_alpha*cos_alpha*(ratio*ratio - 1.0));19 * sqrt(1.0 + sin_alpha*sin_alpha*(ratio*ratio - 1.0)); 23 20 const double f = sas_3j1x_x(q*r); 24 21 … … 42 39 double total = 0.0; 43 40 for (int i=0;i<76;i++) { 44 //const double cos_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2;45 const double cos_alpha = Gauss76Z[i]*zm + zb;46 total += Gauss76Wt[i] * _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha);41 //const double sin_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2; 42 const double sin_alpha = Gauss76Z[i]*zm + zb; 43 total += Gauss76Wt[i] * _ellipsoid_kernel(q, radius_polar, radius_equatorial, sin_alpha); 47 44 } 48 45 // translate dx in [-1,1] to dx in [lower,upper] … … 62 59 double q, sin_alpha, cos_alpha; 63 60 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 64 const double form = _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha);61 const double form = _ellipsoid_kernel(q, radius_polar, radius_equatorial, sin_alpha); 65 62 const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial); 66 63 -
sasmodels/models/guinier_porod.py
rcdcebf1 ra807206 4 4 and dimensionality of scattering objects, including asymmetric objects 5 5 such as rods or platelets, and shapes intermediate between spheres 6 and rods or between rods and platelets, and overcomes some of the 7 deficiencies of the (Beaucage) Unified_Power_Rg model (see Hammouda, 2010). 6 and rods or between rods and platelets. 8 7 9 8 Definition … … 60 59 --------- 61 60 62 B Hammouda, *A new Guinier-Porod model, J. Appl. Cryst.*, (2010), 43, 716-719 61 A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, 62 John Wiley and Sons, New York, (1955) 63 63 64 B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478 65 64 O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982) 65 Check out Chapter 4 on Data Treatment, pages 155-156. 66 66 """ 67 67 -
sasmodels/models/unified_power_Rg.py
r66ca2a6 rb3f2a24 3 3 ---------- 4 4 5 Th is model employs the empirical multiple level unified Exponential/Power-law6 fit method developed by Beaucage. Four functions are included so that 1, 2, 3, 7 or 4 levels can be used. In addition a 0 level has been added which simply 8 calculates5 The Beaucage model employs the empirical multiple level unified 6 Exponential/Power-law fit method developed by G. Beaucage. Four functions 7 are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level 8 has been added which simply calculates 9 9 10 10 .. math:: … … 15 15 many different types of particles, including fractal clusters, random coils 16 16 (Debye equation), ellipsoidal particles, etc. 17 18 The model works best for mass fractal systems characterized by Porod exponents19 between 5/3 and 3. It should not be used for surface fractal systems. Hammouda20 (2010) has pointed out a deficiency in the way this model handles the21 transitioning between the Guinier and Porod regimes and which can create22 artefacts that appear as kinks in the fitted model function.23 24 Also see the Guinier_Porod model.25 17 26 18 The empirical fit function is: … … 38 30 .. math:: 39 31 40 q_i^* = q \left[\operatorname{erf} 41 \left(\frac{q R_{gi}}{\sqrt{6}}\right) 42 \right]^{-3} 32 q_i^* = \frac{q}{\operatorname{erf}^3(q R_{gi}/\sqrt{6}} 43 33 44 34 … … 66 56 67 57 G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146 68 69 B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-147870 58 71 59 """ -
sasmodels/sasview_model.py
ra38b065 r64614ad 16 16 import logging 17 17 from os.path import basename, splitext 18 import thread19 18 20 19 import numpy as np # type: ignore … … 40 39 pass 41 40 42 calculation_lock = thread.allocate_lock()43 44 41 SUPPORT_OLD_STYLE_PLUGINS = True 45 42 … … 60 57 import sas.models 61 58 from sasmodels.conversion_table import CONVERSION_TABLE 62 for new_name, conversion in CONVERSION_TABLE. get((3,1,2), {}).items():59 for new_name, conversion in CONVERSION_TABLE.items(): 63 60 # CoreShellEllipsoidModel => core_shell_ellipsoid:1 64 61 new_name = new_name.split(':')[0] 65 old_name = conversion[0] if len(conversion) < 3 else conversion[2]62 old_name = conversion[0] 66 63 module_attrs = {old_name: find_model(new_name)} 67 64 ConstructedModule = type(old_name, (), module_attrs) … … 608 605 to the card for each evaluation. 609 606 """ 610 ## uncomment the following when trying to debug the uncoordinated calls611 ## to calculate_Iq612 #if calculation_lock.locked():613 # logging.info("calculation waiting for another thread to complete")614 # logging.info("\n".join(traceback.format_stack()))615 616 with calculation_lock:617 return self._calculate_Iq(qx, qy)618 619 def _calculate_Iq(self, qx, qy=None):620 607 #core.HAVE_OPENCL = False 621 608 if self._model is None:
Note: See TracChangeset
for help on using the changeset viewer.