Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/ellipsoid.py

    r3b571ae r925ad6e  
    1818.. math:: 
    1919 
    20     F(q,\alpha) = \Delta \rho V \frac{3(\sin qr  - qr \cos qr)}{(qr)^3} 
     20    F(q,\alpha) = \frac{3 \Delta \rho V (\sin[qr(R_p,R_e,\alpha)] 
     21                - \cos[qr(R_p,R_e,\alpha)])} 
     22                {[qr(R_p,R_e,\alpha)]^3} 
    2123 
    22 for 
     24and 
    2325 
    2426.. math:: 
    2527 
    26     r = \left[ R_e^2 \sin^2 \alpha + R_p^2 \cos^2 \alpha \right]^{1/2} 
     28    r(R_p,R_e,\alpha) = \left[ R_e^2 \sin^2 \alpha 
     29        + R_p^2 \cos^2 \alpha \right]^{1/2} 
    2730 
    2831 
    2932$\alpha$ is the angle between the axis of the ellipsoid and $\vec q$, 
    30 $V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid, $R_p$ is the polar 
    31 radius along the rotational axis of the ellipsoid, $R_e$ is the equatorial 
    32 radius perpendicular to the rotational axis of the ellipsoid and 
    33 $\Delta \rho$ (contrast) is the scattering length density difference between 
    34 the scatterer and the solvent. 
     33$V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid , $R_p$ is the polar radius along the 
     34rotational axis of the ellipsoid, $R_e$ is the equatorial radius perpendicular 
     35to the rotational axis of the ellipsoid and $\Delta \rho$ (contrast) is the 
     36scattering length density difference between the scatterer and the solvent. 
    3537 
    36 For randomly oriented particles use the orientational average, 
     38For randomly oriented particles: 
    3739 
    3840.. math:: 
    3941 
    40    \langle F^2(q) \rangle = \int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)\,d\alpha} 
     42   F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 
    4143 
    42  
    43 computed via substitution of $u=\sin(\alpha)$, $du=\cos(\alpha)\,d\alpha$ as 
    44  
    45 .. math:: 
    46  
    47     \langle F^2(q) \rangle = \int_0^1{F^2(q, u)\,du} 
    48  
    49 with 
    50  
    51 .. math:: 
    52  
    53     r = R_e \left[ 1 + u^2\left(R_p^2/R_e^2 - 1\right)\right]^{1/2} 
    5444 
    5545To provide easy access to the orientation of the ellipsoid, we define 
     
    5848:ref:`cylinder orientation figure <cylinder-angle-definition>`. 
    5949For the ellipsoid, $\theta$ is the angle between the rotational axis 
    60 and the $z$ -axis in the $xz$ plane followed by a rotation by $\phi$ 
    61 in the $xy$ plane. 
     50and the $z$ -axis. 
    6251 
    6352NB: The 2nd virial coefficient of the solid ellipsoid is calculated based 
     
    10190than 500. 
    10291 
    103 Model was also tested against the triaxial ellipsoid model with equal major 
    104 and minor equatorial radii.  It is also consistent with the cyclinder model 
    105 with polar radius equal to length and equatorial radius equal to radius. 
    106  
    10792References 
    10893---------- 
     
    11196*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
    11297Plenum Press, New York, 1987. 
    113  
    114 Authorship and Verification 
    115 ---------------------------- 
    116  
    117 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    118 * **Converted to sasmodels by:** Helen Park **Date:** July 9, 2014 
    119 * **Last Modified by:** Paul Kienzle **Date:** March 22, 2017 
    12098""" 
    12199 
Note: See TracChangeset for help on using the changeset viewer.