Changes in / [e589e9a:9150036] in sasmodels
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/plugin.rst
r81751c2 r94bfa42 272 272 structure factor to account for interactions between particles. See 273 273 `Form_Factors`_ for more details. 274 275 **model_info = ...** lets you define a model directly, for example, by 276 loading and modifying existing models. This is done implicitly by 277 :func:`sasmodels.core.load_model_info`, which can create a mixture model 278 from a pair of existing models. For example:: 279 280 from sasmodels.core import load_model_info 281 model_info = load_model_info('sphere+cylinder') 282 283 See :class:`sasmodels.modelinfo.ModelInfo` for details about the model 284 attributes that are defined. 274 285 275 286 Model Parameters … … 894 905 - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) 895 906 896 For small arguments 907 For small arguments, 897 908 898 909 .. math:: -
example/multiscatfit.py
r49d1f8b8 r2c4a190 15 15 16 16 # Show the model without fitting 17 PYTHONPATH=..:../ explore:../../bumps:../../sasview/src python multiscatfit.py17 PYTHONPATH=..:../../bumps:../../sasview/src python multiscatfit.py 18 18 19 19 # Run the fit 20 PYTHONPATH=..:../ explore:../../bumps:../../sasview/src ../../bumps/run.py \20 PYTHONPATH=..:../../bumps:../../sasview/src ../../bumps/run.py \ 21 21 multiscatfit.py --store=/tmp/t1 22 22 … … 55 55 ) 56 56 57 # Tie the model to the data 58 M = Experiment(data=data, model=model) 59 60 # Stack mulitple scattering on top of the existing resolution function. 61 M.resolution = MultipleScattering(resolution=M.resolution, probability=0.) 62 57 63 # SET THE FITTING PARAMETERS 58 64 model.radius_polar.range(15, 3000) … … 65 71 model.scale.range(0, 0.1) 66 72 67 # Mulitple scattering probability parameter 68 # HACK: the probability is stuffed in as an extra parameter to the experiment. 69 probability = Parameter(name="probability", value=0.0) 70 probability.range(0.0, 0.9) 73 # The multiple scattering probability parameter is in the resolution function 74 # instead of the scattering function, so access it through M.resolution 75 M.scattering_probability.range(0.0, 0.9) 71 76 72 M = Experiment(data=data, model=model, extra_pars={'probability': probability}) 73 74 # Stack mulitple scattering on top of the existing resolution function. 75 # Because resolution functions in sasview don't have fitting parameters, 76 # we instead allow the multiple scattering calculator to take a function 77 # instead of a probability. This function returns the current value of 78 # the parameter. ** THIS IS TEMPORARY ** when multiple scattering is 79 # properly integrated into sasmodels and sasview, its fittable parameter 80 # will be treated like the model parameters. 81 M.resolution = MultipleScattering(resolution=M.resolution, 82 probability=lambda: probability.value, 83 ) 84 M._kernel_inputs = M.resolution.q_calc 77 # Let bumps know that we are fitting this experiment 85 78 problem = FitProblem(M) 86 79 -
sasmodels/__init__.py
ra1ec908 r37f38ff 14 14 defining new models. 15 15 """ 16 __version__ = "0.9 8"16 __version__ = "0.99" 17 17 18 18 def data_files(): -
sasmodels/bumps_model.py
r49d1f8b8 r2c4a190 35 35 # when bumps is not on the path. 36 36 from bumps.names import Parameter # type: ignore 37 from bumps.parameter import Reference # type: ignore 37 38 except ImportError: 38 39 pass … … 139 140 def __init__(self, data, model, cutoff=1e-5, name=None, extra_pars=None): 140 141 # type: (Data, Model, float) -> None 142 # Allow resolution function to define fittable parameters. We do this 143 # by creating reference parameters within the resolution object rather 144 # than modifying the object itself to use bumps parameters. We need 145 # to reset the parameters each time the object has changed. These 146 # additional parameters need to be returned from the fitting engine. 147 # To make them available to the user, they are added as top-level 148 # attributes to the experiment object. The only change to the 149 # resolution function is that it needs an optional 'fittable' attribute 150 # which maps the internal name to the user visible name for the 151 # for the parameter. 152 self._resolution = None 153 self._resolution_pars = {} 141 154 # remember inputs so we can inspect from outside 142 155 self.name = data.filename if name is None else name … … 145 158 self._interpret_data(data, model.sasmodel) 146 159 self._cache = {} 160 # CRUFT: no longer need extra parameters 161 # Multiple scattering probability is now retrieved directly from the 162 # multiple scattering resolution function. 147 163 self.extra_pars = extra_pars 148 164 … … 162 178 return len(self.Iq) 163 179 180 @property 181 def resolution(self): 182 return self._resolution 183 184 @resolution.setter 185 def resolution(self, value): 186 self._resolution = value 187 188 # Remove old resolution fitting parameters from experiment 189 for name in self._resolution_pars: 190 delattr(self, name) 191 192 # Create new resolution fitting parameters 193 res_pars = getattr(self._resolution, 'fittable', {}) 194 self._resolution_pars = { 195 name: Reference(self._resolution, refname, name=name) 196 for refname, name in res_pars.items() 197 } 198 199 # Add new resolution fitting parameters as experiment attributes 200 for name, ref in self._resolution_pars.items(): 201 setattr(self, name, ref) 202 164 203 def parameters(self): 165 204 # type: () -> Dict[str, Parameter] … … 168 207 """ 169 208 pars = self.model.parameters() 170 if self.extra_pars :209 if self.extra_pars is not None: 171 210 pars.update(self.extra_pars) 211 pars.update(self._resolution_pars) 172 212 return pars 173 213 -
sasmodels/direct_model.py
r5024a56 r2c4a190 224 224 else: 225 225 Iq, dIq = None, None 226 #self._theory = np.zeros_like(q)227 q_vectors = [res.q_calc]228 226 elif self.data_type == 'Iqxy': 229 227 #if not model.info.parameters.has_2d: … … 242 240 res = resolution2d.Pinhole2D(data=data, index=index, 243 241 nsigma=3.0, accuracy=accuracy) 244 #self._theory = np.zeros_like(self.Iq)245 q_vectors = res.q_calc246 242 elif self.data_type == 'Iq': 247 243 index = (data.x >= data.qmin) & (data.x <= data.qmax) … … 268 264 else: 269 265 res = resolution.Perfect1D(data.x[index]) 270 271 #self._theory = np.zeros_like(self.Iq)272 q_vectors = [res.q_calc]273 266 elif self.data_type == 'Iq-oriented': 274 267 index = (data.x >= data.qmin) & (data.x <= data.qmax) … … 286 279 qx_width=data.dxw[index], 287 280 qy_width=data.dxl[index]) 288 q_vectors = res.q_calc289 281 else: 290 282 raise ValueError("Unknown data type") # never gets here … … 292 284 # Remember function inputs so we can delay loading the function and 293 285 # so we can save/restore state 294 self._kernel_inputs = q_vectors295 286 self._kernel = None 296 287 self.Iq, self.dIq, self.index = Iq, dIq, index … … 329 320 # type: (ParameterSet, float) -> np.ndarray 330 321 if self._kernel is None: 331 self._kernel = self._model.make_kernel(self._kernel_inputs) 322 # TODO: change interfaces so that resolution returns kernel inputs 323 # Maybe have resolution always return a tuple, or maybe have 324 # make_kernel accept either an ndarray or a pair of ndarrays. 325 kernel_inputs = self.resolution.q_calc 326 if isinstance(kernel_inputs, np.ndarray): 327 kernel_inputs = (kernel_inputs,) 328 self._kernel = self._model.make_kernel(kernel_inputs) 332 329 333 330 # Need to pull background out of resolution for multiple scattering -
sasmodels/multiscat.py
rb3703f5 r2c4a190 342 342 343 343 *probability* is related to the expected number of scattering 344 events in the sample $\lambda$ as $p = 1 = e^{-\lambda}$. As a 345 hack to allow probability to be a fitted parameter, the "value" 346 can be a function that takes no parameters and returns the current 347 value of the probability. *coverage* determines how many scattering 348 steps to consider. The default is 0.99, which sets $n$ such that 349 $1 \ldots n$ covers 99% of the Poisson probability mass function. 344 events in the sample $\lambda$ as $p = 1 - e^{-\lambda}$. 345 *coverage* determines how many scattering steps to consider. The 346 default is 0.99, which sets $n$ such that $1 \ldots n$ covers 99% 347 of the Poisson probability mass function. 350 348 351 349 *is2d* is True then 2D scattering is used, otherwise it accepts … … 399 397 self.qmin = qmin 400 398 self.nq = nq 401 self.probability = probability399 self.probability = 0. if probability is None else probability 402 400 self.coverage = coverage 403 401 self.is2d = is2d … … 456 454 self.Iqxy = None # type: np.ndarray 457 455 456 # Label probability as a fittable parameter, and give its external name 457 # Note that the external name must be a valid python identifier, since 458 # is will be set as an experiment attribute. 459 self.fittable = {'probability': 'scattering_probability'} 460 458 461 def apply(self, theory): 459 462 if self.is2d: … … 463 466 Iq_calc = Iq_calc.reshape(self.nq, self.nq) 464 467 468 # CRUFT: don't need probability as a function anymore 465 469 probability = self.probability() if callable(self.probability) else self.probability 466 470 coverage = self.coverage -
sasmodels/sasview_model.py
r3a1afed r3a1afed 25 25 from . import core 26 26 from . import custom 27 from . import kernelcl 27 28 from . import product 28 29 from . import generate … … 30 31 from . import modelinfo 31 32 from .details import make_kernel_args, dispersion_mesh 33 from .kernelcl import reset_environment 32 34 33 35 # pylint: disable=unused-import … … 68 70 #: has changed since we last reloaded. 69 71 _CACHED_MODULE = {} # type: Dict[str, "module"] 72 73 def reset_environment(): 74 # type: () -> None 75 """ 76 Clear the compute engine context so that the GUI can change devices. 77 78 This removes all compiled kernels, even those that are active on fit 79 pages, but they will be restored the next time they are needed. 80 """ 81 kernelcl.reset_environment() 82 for model in MODELS.values(): 83 model._model = None 70 84 71 85 def find_model(modelname): … … 696 710 def _calculate_Iq(self, qx, qy=None): 697 711 if self._model is None: 698 self._model = core.build_model(self._model_info) 712 # Only need one copy of the compiled kernel regardless of how many 713 # times it is used, so store it in the class. Also, to reset the 714 # compute engine, need to clear out all existing compiled kernels, 715 # which is much easier to do if we store them in the class. 716 self.__class__._model = core.build_model(self._model_info) 699 717 if qy is not None: 700 718 q_vectors = [np.asarray(qx), np.asarray(qy)]
Note: See TracChangeset
for help on using the changeset viewer.