Changeset 8a22b5b in sasview for src/sas/perspectives/pr


Ignore:
Timestamp:
Feb 19, 2015 9:20:54 AM (10 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
0721c3d
Parents:
6271222
Message:

Proof read.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/perspectives/pr/media/pr_help.rst

    rec392464 r8a22b5b  
    55 
    66.. |pi| unicode:: U+03C0 
     7.. |bigphi| unicode:: U+03A6 
     8.. |bigsigma| unicode:: U+03A3 
    79.. |chi| unicode:: U+03C7 
    810 
     
    1012========================== 
    1113 
    12 The inversion approach is based on Moore, J. Appl. Cryst., (1980) 13, 168-175. 
     14Description 
     15----------- 
    1316 
    14 P(r) is set to be equal to an expansion of base functions of the type 
    15 phi_n(r) = 2 * r * sin(|pi| * n * r / D_max). 
     17This tool calculates a real-space distance distribution function, *P(r)*, using  
     18the inversion approach (Moore, 1908). 
     19 
     20*P(r)* is set to be equal to an expansion of base functions of the type 
     21 
     22  |bigphi|\_n(r) = 2.r.sin(|pi|\ .n.r/D_max) 
    1623 
    1724The coefficient of each base function in the expansion is found by performing  
    18 a least square fit with the following fit function: 
     25a least square fit with the following fit function 
    1926 
    20 |chi| ^2 = sum_i[ I_meas(q_i) - I_th(q_i) ]^2 / error^2 + Reg_term 
     27  |chi|\ :sup:`2` = |bigsigma|\ :sub:`i` [ I\ :sub:`meas`\ (Q\ :sub:`i`\ ) - I\ :sub:`th`\ (Q\ :sub:`i`\ ) ] :sup:`2` / (Error) :sup:`2` + Reg_term 
    2128 
    22 where I_meas(q) is the measured scattering intensity and I_th(q) is the  
    23 prediction from the Fourier transform of the P(r) expansion.  
     29where I\ :sub:`meas`\ (Q) is the measured scattering intensity and  
     30I\ :sub:`th`\ (Q) is the prediction from the Fourier transform of the *P(r)*  
     31expansion.  
    2432 
    25 The Reg_term term is a regularization term set to the second derivative  
    26 d^2 P(r) / dr^2 integrated over r. It is used to produce a smooth P(r) output. 
     33The *Reg_term* term is a regularization term set to the second derivative  
     34d\ :sup:`2`\ *P(r)* / dr\ :sup:`2` integrated over *r*. It is used to produce a  
     35smooth *P(r)* output. 
    2736 
    28 The following are user inputs: 
     37.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    2938 
    30 *  Number of terms: the number of base functions in the P(r) expansion. 
     39How To 
     40------ 
     41 
     42The user must enter 
     43 
     44*  *Number of terms*: the number of base functions in the P(r) expansion. 
    3145    
    32 Regularization constant: a multiplicative constant to set the size of 
     46*Regularization constant*: a multiplicative constant to set the size of 
    3347   the regularization term. 
    3448 
    35 Maximum distance: the maximum distance between any two points in the 
     49*Maximum distance*: the maximum distance between any two points in the 
    3650   system. 
     51 
     52.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     53 
     54Reference 
     55--------- 
     56 
     57P.B. Moore 
     58*J. Appl. Cryst.*, 13 (1980) 168-175 
     59 
     60.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     61 
     62.. note::  This help document was last changed by Steve King, 19Feb2015 
Note: See TracChangeset for help on using the changeset viewer.