Changeset 8a22b5b in sasview for src/sas/perspectives/pr
- Timestamp:
- Feb 19, 2015 9:20:54 AM (10 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 0721c3d
- Parents:
- 6271222
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/perspectives/pr/media/pr_help.rst
rec392464 r8a22b5b 5 5 6 6 .. |pi| unicode:: U+03C0 7 .. |bigphi| unicode:: U+03A6 8 .. |bigsigma| unicode:: U+03A3 7 9 .. |chi| unicode:: U+03C7 8 10 … … 10 12 ========================== 11 13 12 The inversion approach is based on Moore, J. Appl. Cryst., (1980) 13, 168-175. 14 Description 15 ----------- 13 16 14 P(r) is set to be equal to an expansion of base functions of the type 15 phi_n(r) = 2 * r * sin(|pi| * n * r / D_max). 17 This tool calculates a real-space distance distribution function, *P(r)*, using 18 the inversion approach (Moore, 1908). 19 20 *P(r)* is set to be equal to an expansion of base functions of the type 21 22 |bigphi|\_n(r) = 2.r.sin(|pi|\ .n.r/D_max) 16 23 17 24 The coefficient of each base function in the expansion is found by performing 18 a least square fit with the following fit function :25 a least square fit with the following fit function 19 26 20 |chi| ^2 = sum_i[ I_meas(q_i) - I_th(q_i) ]^2 / error^2+ Reg_term27 |chi|\ :sup:`2` = |bigsigma|\ :sub:`i` [ I\ :sub:`meas`\ (Q\ :sub:`i`\ ) - I\ :sub:`th`\ (Q\ :sub:`i`\ ) ] :sup:`2` / (Error) :sup:`2` + Reg_term 21 28 22 where I_meas(q) is the measured scattering intensity and I_th(q) is the 23 prediction from the Fourier transform of the P(r) expansion. 29 where I\ :sub:`meas`\ (Q) is the measured scattering intensity and 30 I\ :sub:`th`\ (Q) is the prediction from the Fourier transform of the *P(r)* 31 expansion. 24 32 25 The Reg_term term is a regularization term set to the second derivative 26 d^2 P(r) / dr^2 integrated over r. It is used to produce a smooth P(r) output. 33 The *Reg_term* term is a regularization term set to the second derivative 34 d\ :sup:`2`\ *P(r)* / dr\ :sup:`2` integrated over *r*. It is used to produce a 35 smooth *P(r)* output. 27 36 28 The following are user inputs: 37 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 29 38 30 * Number of terms: the number of base functions in the P(r) expansion. 39 How To 40 ------ 41 42 The user must enter 43 44 * *Number of terms*: the number of base functions in the P(r) expansion. 31 45 32 * Regularization constant: a multiplicative constant to set the size of46 * *Regularization constant*: a multiplicative constant to set the size of 33 47 the regularization term. 34 48 35 * Maximum distance: the maximum distance between any two points in the49 * *Maximum distance*: the maximum distance between any two points in the 36 50 system. 51 52 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 53 54 Reference 55 --------- 56 57 P.B. Moore 58 *J. Appl. Cryst.*, 13 (1980) 168-175 59 60 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 61 62 .. note:: This help document was last changed by Steve King, 19Feb2015
Note: See TracChangeset
for help on using the changeset viewer.