Changeset 783c1b5 in sasview for src/sas/sasgui/perspectives/fitting


Ignore:
Timestamp:
Aug 22, 2017 2:55:25 PM (7 years ago)
Author:
GitHub <noreply@…>
Parents:
f001bc9 (diff), d24e41d (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
git-author:
Paul Butler <butlerpd@…> (08/22/17 14:55:25)
git-committer:
GitHub <noreply@…> (08/22/17 14:55:25)
Message:

Merge d24e41d0373baae3f4b6c5d0d232d990ff61920b into f001bc9e4b9d1ac0d4712117442f0c949334dbc4

Location:
src/sas/sasgui/perspectives/fitting
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/fitting/fitting.py

    r489f53a rd24e41d  
    17421742            @param unsmeared_error: data error, rescaled to unsmeared model 
    17431743        """ 
    1744  
    17451744        number_finite = np.count_nonzero(np.isfinite(y)) 
    17461745        np.nan_to_num(y) 
     
    17591758                                      dy=unsmeared_error) 
    17601759        # Comment this out until we can get P*S models with correctly populated parameters 
    1761         #if sq_model is not None and pq_model is not None: 
    1762         #    self.create_theory_1D(x, sq_model, page_id, model, data, state, 
    1763         #                          data_description=model.name + " S(q)", 
    1764         #                          data_id=str(page_id) + " " + data.name + " S(q)") 
    1765         #    self.create_theory_1D(x, pq_model, page_id, model, data, state, 
    1766         #                          data_description=model.name + " P(q)", 
    1767         #                          data_id=str(page_id) + " " + data.name + " P(q)") 
     1760        if sq_model is not None and pq_model is not None: 
     1761            self.create_theory_1D(x, sq_model, page_id, model, data, state, 
     1762                                  data_description=model.name + " S(q)", 
     1763                                  data_id=str(page_id) + " " + data.name + " S(q)") 
     1764            self.create_theory_1D(x, pq_model, page_id, model, data, state, 
     1765                                  data_description=model.name + " P(q)", 
     1766                                  data_id=str(page_id) + " " + data.name + " P(q)") 
    17681767 
    17691768        current_pg = self.fit_panel.get_page_by_id(page_id) 
  • src/sas/sasgui/perspectives/fitting/model_thread.py

    r7432acb r426df2e  
    7171                    (self.data.qy_data * self.data.qy_data)) 
    7272 
    73         # For theory, qmax is based on 1d qmax  
     73        # For theory, qmax is based on 1d qmax 
    7474        # so that must be mulitified by sqrt(2) to get actual max for 2d 
    7575        index_model = (self.qmin <= radius) & (radius <= self.qmax) 
     
    9191                self.data.qy_data[index_model] 
    9292            ]) 
    93         output = np.zeros(len(self.data.qx_data)) 
     93        # Initialize output to NaN so masked elements do not get plotted. 
     94        output = np.empty_like(self.data.qx_data) 
    9495        # output default is None 
    9596        # This method is to distinguish between masked 
    9697        #point(nan) and data point = 0. 
    97         output = output / output 
     98        output[:] = np.NaN 
    9899        # set value for self.mask==True, else still None to Plottools 
    99100        output[index_model] = value 
     
    198199            output[index] = self.model.evalDistribution(self.data.x[index]) 
    199200 
     201        x=self.data.x[index] 
     202        y=output[index] 
    200203        sq_values = None 
    201204        pq_values = None 
    202         s_model = None 
    203         p_model = None 
    204205        if isinstance(self.model, MultiplicationModel): 
    205206            s_model = self.model.s_model 
    206207            p_model = self.model.p_model 
    207         elif hasattr(self.model, "get_composition_models"): 
    208             p_model, s_model = self.model.get_composition_models() 
    209  
    210         if p_model is not None and s_model is not None: 
    211             sq_values = np.zeros((len(self.data.x))) 
    212             pq_values = np.zeros((len(self.data.x))) 
    213             sq_values[index] = s_model.evalDistribution(self.data.x[index]) 
    214             pq_values[index] = p_model.evalDistribution(self.data.x[index]) 
     208            sq_values = s_model.evalDistribution(x) 
     209            pq_values = p_model.evalDistribution(x) 
     210        elif hasattr(self.model, "calc_composition_models"): 
     211            results = self.model.calc_composition_models(x) 
     212            if results is not None: 
     213                sq_values = results[0] 
     214                pq_values = results[1] 
     215 
    215216 
    216217        elapsed = time.time() - self.starttime 
    217218 
    218         self.complete(x=self.data.x[index], y=output[index], 
     219        self.complete(x=x, y=y, 
    219220                      page_id=self.page_id, 
    220221                      state=self.state, 
Note: See TracChangeset for help on using the changeset viewer.