- Timestamp:
- Apr 5, 2014 12:56:46 PM (11 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 9e78edb
- Parents:
- 9777cb0
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sans/models/media/model_functions.rst
r38d4102 r77cfcf0 168 168 - CoreShellCylinderModel_ 169 169 - EllipticalCylinderModel_ 170 - FlexibleCylinderModel 171 - FlexCylEllipXModel 172 - CoreShellBicelleModel 173 - BarBellModel 174 - StackedDisksModel 175 - PringleModel 170 - FlexibleCylinderModel_ 171 - FlexCylEllipXModel_ 172 - CoreShellBicelleModel_ 173 - BarBellModel_ 174 - StackedDisksModel_ 175 - PringleModel_ 176 176 177 177 Ellipsoid-based … … 180 180 - EllipsoidModel 181 181 - CoreShellEllipsoidModel 182 - CoreShellEllipsoidXTModel 182 183 - TriaxialEllipsoidModel 183 184 … … 615 616 for a diagram and documentation. 616 617 617 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.618 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 618 619 619 620 Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible. … … 1343 1344 *2.1.16.1. Definition* 1344 1345 1345 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.1346 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 1346 1347 1347 1348 The Capped Cylinder geometry is defined as … … 1752 1753 **2.1.21 CoreShellBicelleModel** 1753 1754 1754 This model provides the form factor for a circular cylinder with a 1755 core-shell scattering length density profile. The form factor is 1756 normalized by the particle volume. This model is a more general case 1757 of core-shell cylinder model (seeabove and reference below) in that 1758 the parameters of the shell are separated into a face-shell and a rim- 1759 shell so that users can set different values of the thicknesses and 1760 slds. 1761 1762 1763 1764 The returned value is scaled to units of |cm^-1| and the parameters of 1765 the core-shell cylinder model are the following: 1755 This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The 1756 form factor is normalized by the particle volume. 1757 1758 This model is a more general case of core-shell cylinder model (see above and reference below) in that the parameters 1759 of the shell are separated into a face-shell and a rim-shell so that users can set different values of the thicknesses 1760 and SLDs. 1761 1762 .. image:: img/image240.PNG 1763 1764 *(Graphic from DOI: 10.1039/C0NP00002G)* 1765 1766 The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellBicelleModel are the following 1766 1767 1767 1768 ============== ======== ============= … … 1782 1783 ============== ======== ============= 1783 1784 1784 The output of the 1D scattering intensity function for randomly 1785 oriented cylinders is then given by the equation above. 1786 1787 The *axis_theta* and axis *_phi* parameters are not used for the 1D 1788 output. Our implementation of the scattering kernel and the 1D 1789 scattering intensity use the c-library from NIST. 1790 1791 1792 1793 1785 The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above. 1786 1787 The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel 1788 and the 1D scattering intensity use the c-library from NIST. 1789 1790 .. image:: img/cscylbicelle_pic.jpg 1794 1791 1795 1792 *Figure. 1D plot using the default values (w/200 data point).* 1796 1793 1797 1798 1799 Figure. Definition of the angles for the oriented Core-Shell Cylinder 1800 Bicelle Model. 1801 1802 1803 1804 Figure. Examples of the angles for oriented pp against the detector 1805 plane. 1794 .. image:: img/image061.JPG 1795 1796 *Figure. Definition of the angles for the oriented CoreShellBicelleModel.* 1797 1798 .. image:: img/image062.JPG 1799 1800 *Figure. Examples of the angles for oriented pp against the detector plane.* 1806 1801 1807 1802 REFERENCE 1808 Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle 1809 X-Ray and Neutron Scattering", Plenum Press, New York, (1987). 1803 L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press, 1804 New York, (1987) 1810 1805 1811 1806 … … 1815 1810 **2.1.22. BarBellModel** 1816 1811 1817 Calculates the scattering from a barbell-shaped cylinder (This model 1818 simply becomes the DumBellModel when the length of the cylinder, L, is 1819 set to zero). That is, a sphereocylinder with spherical end caps that 1820 have a radius larger than that of the cylinder and the center of the 1821 end cap radius lies outside of the cylinder All dimensions of the 1822 barbell are considered to be monodisperse. See the diagram for the 1823 details of the geometry and restrictions on parameter values. 1824 1825 *1.1. Definition* 1826 1827 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 1812 Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of 1813 the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than 1814 that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell 1815 are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values. 1816 1817 *2.1.22.1. Definition* 1818 1819 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 1828 1820 1829 1821 The barbell geometry is defined as 1830 1822 1831 1832 1833 r is the radius of the cylinder. All other parameters are as defined 1834 in the diagram. Since the end cap radius R >= r and by definition for 1835 this geometry h > 0, h is then defined by r and R as 1836 1837 h = sqrt(R^2 - r^2). 1838 1839 The scattering intensity I(q) is calculated as: 1840 1841 1842 1843 where the amplitude A(q) is given as: 1844 1845 1846 1847 1848 1849 1850 1851 The < > brackets denote an average of the structure over all 1852 orientations. <A^2(q)> is then the form factor, P(q). The scale factor 1853 is equivalent to the volume fraction of cylinders, each of volume, V. 1854 Contrast is the difference of scattering length densities of the 1855 cylinder and the surrounding solvent. 1856 1857 The volume of the barbell is: 1858 1859 1860 1861 and its radius of gyration: 1862 1863 1864 1865 The necessary conditions of R >= r is not enforced in the model. It is 1866 up to you to restrict this during analysis. 1867 1868 REFERENCES 1869 1870 H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. 1871 1872 H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda 1873 and errata) 1874 1875 TEST DATASET 1876 1877 This example dataset is produced by running the Macro PlotBarbell(), 1878 using 200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 -1 and the above 1879 default values. 1823 .. image:: img/image105.JPG 1824 1825 where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. 1826 1827 Since the end cap radius 1828 *R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as 1829 1830 *h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`) 1831 1832 The scattered intensity *I(q)* is calculated as 1833 1834 .. image:: img/image106.PNG 1835 1836 where the amplitude *A(q)* is given as 1837 1838 .. image:: img/image107.PNG 1839 1840 The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form 1841 factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is 1842 the difference of scattering length densities of the cylinder and the surrounding solvent. 1843 1844 The volume of the barbell is 1845 1846 .. image:: img/image108.JPG 1847 1848 1849 and its radius of gyration is 1850 1851 .. image:: img/image109.JPG 1852 1853 **The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis. 1854 1855 This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|, 1856 *qmax* = 0.7 |Ang^-1| and the following default values 1880 1857 1881 1858 ============== ======== ============= … … 1891 1868 ============== ======== ============= 1892 1869 1893 1870 .. image:: img/image110.JPG 1894 1871 1895 1872 *Figure. 1D plot using the default values (w/256 data point).* 1896 1873 1897 For 2D data: The 2D scattering intensity is calculated similar to the 1898 2D cylinder model. At the theta = 45 deg and phi =0 deg with default 1899 values for other parameters, 1900 1901 1874 For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for 1875 |theta| = 45 deg and |phi| = 0 deg with default values for other parameters 1876 1877 .. image:: img/image111.JPG 1902 1878 1903 1879 *Figure. 2D plot (w/(256X265) data points).* 1904 1880 1905 1906 1907 1908 1909 Figure. Examples of the angles for oriented pp against the detector 1910 plane. 1881 .. image:: img/image061.JPG 1882 1883 *Figure. Examples of the angles for oriented pp against the detector plane.* 1884 1885 .. image:: img/image062.JPG 1911 1886 1912 1887 Figure. Definition of the angles for oriented 2D barbells. 1913 1888 1889 REFERENCE 1890 H. Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230 1891 H. Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata) 1892 1914 1893 1915 1894 … … 1918 1897 **2.1.23. StackedDisksModel** 1919 1898 1920 This model provides the form factor, *P(q)*, for stacked discs 1921 (tactoids) with a core/layer structure where the form factor is 1922 normalized by the volume of the cylinder. Assuming the next neighbor 1923 distance (d-spacing) in a stack of parallel discs obeys a Gaussian 1924 distribution, a structure factor S(q) proposed by Kratky and Porod in 1925 1949 is used in this function. Note that the resolution smearing 1926 calculation uses 76 Gauss quadrature points to properly smear the 1927 model since the function is HIGHLY oscillatory, especially around the 1928 q-values that correspond to the repeat distance of the layers. 1929 1930 The 2D scattering intensity is the same as 1D, regardless of the 1931 orientation of the *q* vector which is defined as . 1932 1933 1934 1935 1936 1937 1938 1939 The returned value is in units of [|cm^-1| |sr^-1|, on absolute scale. 1940 1941 The scattering intensity I(q) is: 1942 1943 1944 1945 where the contrast, 1946 1947 1948 1949 N is the number of discs per unit volume, ais the angle between the 1950 axis of the disc and q, and Vt and Vc are the total volume and the 1951 core volume of a single disc, respectively. 1952 1953 1954 1955 1956 1957 1958 1959 where d = thickness of the layer (layer_thick), 2h= core thickness 1960 (core_thick), and R = radius of the disc (radius). 1961 1962 1963 1964 where n = the total number of the disc stacked (n_stacking), D=the 1965 next neighbor center to cent distance (d-spacing), and sD= the 1966 Gaussian standard deviation of the d-spacing (sigma_d). 1967 1968 To provide easy access to the orientation of the stackeddisks, we 1969 define the axis of the cylinder using two angles and . Similarly to 1970 the case of the cylinder, those angles are defined on Figure 2 of 1971 CylinderModel. 1972 1973 For P*S: The 2nd virial coefficient of the solid cylinder is calculate 1974 based on the (radius) and length = n_stacking*(core_thick 1975 +2*layer_thick) values, and used as the effective radius toward S(Q) 1976 when P(Q)*S(Q) is applied. 1899 This model provides the form factor, *P(q)*, for stacked discs (tactoids) with a core/layer structure where the form 1900 factor is normalized by the volume of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack of 1901 parallel discs obeys a Gaussian distribution, a structure factor *S(q)* proposed by Kratky and Porod in 1949 is used 1902 in this function. 1903 1904 Note that the resolution smearing calculation uses 76 Gauss quadrature points to properly smear the model since the 1905 function is HIGHLY oscillatory, especially around the *q*-values that correspond to the repeat distance of the layers. 1906 1907 The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as 1908 1909 .. image:: img/image008.PNG 1910 1911 The returned value is in units of |cm^-1| |sr^-1|, on absolute scale. 1912 1913 *2.1.23.1 Definition* 1914 1915 .. image:: img/image079.GIF 1916 1917 The scattering intensity I(q) is 1918 1919 .. image:: img/image081.PNG 1920 1921 where the contrast 1922 1923 .. image:: img/image082.PNG 1924 1925 and *N* is the number of discs per unit volume, |alpha| is the angle between the axis of the disc and *q*, and *Vt* 1926 and *Vc* are the total volume and the core volume of a single disc, respectively. 1927 1928 .. image:: img/image083.PNG 1929 1930 where *d* = thickness of the layer (*layer_thick*), 2\ *h* = core thickness (*core_thick*), and *R* = radius of the 1931 disc (*radius*). 1932 1933 .. image:: img/image084.PNG 1934 1935 where *n* = the total number of the disc stacked (*n_stacking*), *D* = the next neighbor center-to-center distance 1936 (*d-spacing*), and |sigma|\ D= the Gaussian standard deviation of the d-spacing (*sigma_d*). 1937 1938 To provide easy access to the orientation of the stacked disks, we define the axis of the cylinder using two angles 1939 |theta| and |phi|. These angles are defined on Figure 2 of CylinderModel. 1940 1941 NB: The 2nd virial coefficient of the cylinder is calculated based on the *radius* and *length* = *n_stacking* \* 1942 (*core_thick* + 2 \* *layer_thick*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 1977 1943 1978 1944 ============== ======== ============= … … 1991 1957 ============== ======== ============= 1992 1958 1993 1959 .. image:: img/image085.JPG 1994 1960 1995 1961 *Figure. 1D plot using the default values (w/1000 data point).* 1996 1962 1997 1998 1999 Figure. Examples of the angles for oriented stackeddisks against the 2000 detector plane. 2001 2002 2003 2004 Figure. Examples of the angles for oriented pp against the detector 2005 plane. 2006 2007 Our model uses the form factor calculations implemented in a c-library 2008 provided by the NIST Center for Neutron Research (Kline, 2006): 1963 .. image:: img/image086.JPG 1964 1965 *Figure. Examples of the angles for oriented stackeddisks against the detector plane.* 1966 1967 .. image:: img/image062.JPG 1968 1969 *Figure. Examples of the angles for oriented pp against the detector plane.* 1970 1971 Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 1972 (Kline, 2006) 2009 1973 2010 1974 REFERENCE 2011 2012 Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John 2013 Wiley and Sons, New York, 1955. 2014 2015 Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949. 2016 2017 Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering", 2018 Clarendon, Oxford, 1994. 1975 A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955 1976 O. Kratky and G. Porod, *J. Colloid Science*, 4, (1949) 35 1977 J. S. Higgins and H. C. Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994 2019 1978 2020 1979 … … 2024 1983 **2.1.24. PringleModel** 2025 1984 2026 This model provides the form factor, *P(q)*, for a 'pringle' or 2027 'saddle-shaped' object (a hyperbolic paraboloid). 2028 2029 1985 This model provides the form factor, *P(q)*, for a 'pringle' or 'saddle-shaped' object (a hyperbolic paraboloid). 1986 1987 .. image:: img/image241.PNG 1988 1989 *(Graphic from Matt Henderson, matt@matthen.com)* 2030 1990 2031 1991 The returned value is in units of |cm^-1|, on absolute scale. 2032 1992 2033 The form factor calculated is :2034 2035 1993 The form factor calculated is 1994 1995 .. image:: img/pringle_eqn_1.jpg 2036 1996 2037 1997 where 2038 1998 2039 2040 2041 2042 2043 The parameters of the model and a plot comparing the pringle model 2044 with the equivalent cylinder are shown below. 1999 .. image:: img/pringle_eqn_2.jpg 2000 2001 The parameters of the model and a plot comparing the pringle model with the equivalent cylinder are shown below. 2045 2002 2046 2003 ============== ======== ============= … … 2057 2014 ============== ======== ============= 2058 2015 2059 2016 .. image:: img/pringle-vs-cylinder.png 2060 2017 2061 2018 *Figure. 1D plot using the default values (w/150 data point).* 2062 2019 2063 2020 REFERENCE 2064 2065 2021 S. Alexandru Rautu, Private Communication. 2066 2022 … … 2248 2204 2249 2205 2206 .. _CoreShellEllipsoidXTModel: 2207 2208 **2.1.27. CoreShellEllipsoidXTModel** 2209 2210 An alternative version of *P(q)* for the core-shell ellipsoid (see CoreShellEllipsoidModel), having as parameters the 2211 core axial ratio *X* and a shell thickness, which are more often what we would like to determine. 2212 2213 This model is also better behaved when polydispersity is applied than the four independent radii in 2214 CoreShellEllipsoidModel. 2215 2216 *2.1.27.1 Definition* 2217 2218 .. image:: img/image125.gif 2219 2220 The geometric parameters of this model are 2221 2222 *equat_core* = equatorial core radius = *Rminor_core* 2223 *X_core* = *polar_core* / *equat_core* = *Rmajor_core* / *Rminor_core* 2224 *T_shell* = *equat_outer* - *equat_core* = *Rminor_outer* - *Rminor_core* 2225 *XpolarShell* = *Tpolar_shell* / *T_shell* = (*Rmajor_outer* - *Rmajor_core*)/(*Rminor_outer* - *Rminor_core*) 2226 2227 In terms of the original radii 2228 2229 *polar_core* = *equat_core* \* *X_core* 2230 *equat_shell* = *equat_core* + *T_shell* 2231 *polar_shell* = *equat_core* \* *X_core* + *T_shell* \* *XpolarShell* 2232 2233 (where we note that "shell" perhaps confusingly, relates to the outer radius) 2234 2235 When *X_core* < 1 the core is oblate; when *X_core* > 1 it is prolate. *X_core* = 1 is a spherical core. 2236 2237 For a fixed shell thickness *XpolarShell* = 1, to scale the shell thickness pro-rata with the radius 2238 *XpolarShell* = *X_core*. 2239 2240 When including an *S(q)*, the radius in *S(q)* is calculated to be that of a sphere with the same 2nd virial 2241 coefficient of the **outer** surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of 2242 the ellipsoid is large (ie, if *X* << 1 or *X* >> 1), when the *S(q)* - which assumes spheres - will not in any case 2243 be valid. 2244 2245 If SANS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the 2246 "outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0, 2247 or contain some other units conversion factor (for example, if you have SAXS data). 2248 2249 ============== ======== ============= 2250 Parameter name Units Default value 2251 ============== ======== ============= 2252 background |cm^-1| 0.001 2253 equat_core |Ang| 20 2254 scale None 0.05 2255 sld_core |Ang^-2| 2.0e-6 2256 sld_shell |Ang^-2| 1.0e-6 2257 sld_solv |Ang^-2| 6.3e-6 2258 T_shell |Ang| 30 2259 X_core None 3.0 2260 XpolarShell None 1.0 2261 ============== ======== ============= 2262 2263 REFERENCE 2264 R. K. Heenan, Private communication 2265 2266 2267 2250 2268 .. _TriaxialEllipsoidalModel: 2251 2269 2252 **2.1.2 7. TriaxialEllipsoidModel***2270 **2.1.28. TriaxialEllipsoidModel** 2253 2271 2254 2272 This model provides the form factor, *P(q)*, for an ellipsoid (below) … … 2332 2350 .. _LamellarModel: 2333 2351 2334 **2.1.2 8. LamellarModel**2352 **2.1.29. LamellarModel** 2335 2353 2336 2354 This model provides the scattering intensity, I( *q*), for a lyotropic … … 2385 2403 .. _LamellarFFHGModel: 2386 2404 2387 **2.1. 29. LamellarFFHGModel**2405 **2.1.30. LamellarFFHGModel** 2388 2406 2389 2407 This model provides the scattering intensity, I( *q*), for a lyotropic … … 2442 2460 .. _LamellarPSModel: 2443 2461 2444 **2.1.3 0. LamellarPSModel**2462 **2.1.31. LamellarPSModel** 2445 2463 2446 2464 This model provides the scattering intensity ( *form factor* \* … … 2512 2530 .. _LamellarPSHGModel: 2513 2531 2514 **2.1.3 1. LamellarPSHGModel**2532 **2.1.32. LamellarPSHGModel** 2515 2533 2516 2534 This model provides the scattering intensity ( *form factor* \* … … 2593 2611 .. _LamellarPCrystalModel: 2594 2612 2595 **2.1.3 2. LamellarPCrystalModel**2613 **2.1.33. LamellarPCrystalModel** 2596 2614 2597 2615 Lamella ParaCrystal Model: Calculates the scattering from a stack of … … 2661 2679 .. _SCCrystalModel: 2662 2680 2663 **2.1.3 3. SCCrystalModel**2681 **2.1.34. SCCrystalModel** 2664 2682 2665 2683 Calculates the scattering from a simple cubic lattice with … … 2669 2687 characterized by a Gaussian distribution. 2670 2688 2671 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.2689 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 2672 2690 2673 2691 The scattering intensity I(q) is calculated as … … 2769 2787 .. _FCCrystalModel: 2770 2788 2771 **2.1.3 4. FCCrystalModel**2789 **2.1.35. FCCrystalModel** 2772 2790 2773 2791 Calculates the scattering from a face-centered cubic lattice with … … 2777 2795 characterized by a Gaussian distribution. 2778 2796 2779 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.2797 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 2780 2798 2781 2799 The scattering intensity I(q) is calculated as: … … 2868 2886 .. _BCCrystalModel: 2869 2887 2870 **2.1.3 5. BCCrystalModel**2888 **2.1.36. BCCrystalModel** 2871 2889 2872 2890 Calculates the scattering from a body-centered cubic lattice with … … 2875 2893 Paracrystalline distortion is assumed to be isotropic and 2876 2894 characterized by a Gaussian distribution.The returned value is scaled 2877 to units of [|cm^-1|\ |sr^-1|, absolute scale.2895 to units of |cm^-1|\ |sr^-1|, absolute scale. 2878 2896 2879 2897 The scattering intensity I(q) is calculated as: … … 2977 2995 .. _ParallelepipedModel: 2978 2996 2979 **2.1.3 6. ParallelepipedModel**2997 **2.1.37. ParallelepipedModel** 2980 2998 2981 2999 This model provides the form factor, *P(q)*, for a rectangular … … 3067 3085 .. _CSParallelepipedModel: 3068 3086 3069 **2.1.3 7. CSParallelepipedModel**3087 **2.1.38. CSParallelepipedModel** 3070 3088 3071 3089 Calculates the form factor for a rectangular solid with a core-shell … … 3147 3165 3148 3166 This example dataset is produced by running the Macro 3149 Plot_CSParallelepiped(), using 100 data points, *qmin* = 0.001 -1, *qmax*3167 Plot_CSParallelepiped(), using 100 data points, *qmin* = 0.001 |Ang^-1|, *qmax* 3150 3168 = 0.7 -1 and the below default values. 3151 3169 … … 3254 3272 structures). 3255 3273 3256 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.3274 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 3257 3275 3258 3276 The scattering intensity I(q) is calculated by: … … 3327 3345 a low-Q signal and a high-Q signal 3328 3346 3329 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.3347 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 3330 3348 3331 3349 The scattering intensity I(q) is calculated by: … … 3960 3978 provided. 3961 3979 3962 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.3980 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 3963 3981 3964 3982 See each of these individual models for full documentation. … … 4041 4059 structures. 4042 4060 4043 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4061 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4044 4062 4045 4063 The scattering intensity I(q) is calculated as (eqn 5 from the … … 4240 4258 4241 4259 The returned value is P(Q) as written in equation (1), plus the 4242 incoherent background term. The result is in the units of [|cm^-1|\ |sr^-1|,4260 incoherent background term. The result is in the units of |cm^-1|\ |sr^-1|, 4243 4261 absolute scale. 4244 4262 … … 4489 4507 molecular weight distribution. 4490 4508 4491 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4509 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4492 4510 4493 4511 … … 4512 4530 4513 4531 This example dataset is produced by running the Poly_GaussCoil, using 4514 200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 -1 and the default values4532 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 -1 and the default values 4515 4533 below. 4516 4534 … … 4566 4584 Calculates the scattering from polymers with excluded volume effects. 4567 4585 4568 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4586 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4569 4587 4570 4588 The returned value is P(Q) as written in equation (2), plus the 4571 incoherent background term. The result is in the units of [|cm^-1|\ |sr^-1|,4589 incoherent background term. The result is in the units of |cm^-1|\ |sr^-1|, 4572 4590 absolute scale. 4573 4591 … … 4824 4842 a two Lorentzian functions. 4825 4843 4826 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4844 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4827 4845 4828 4846 The scattering intensity I(q) is calculated by: … … 4902 4920 two power laws. 4903 4921 4904 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4922 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4905 4923 4906 4924 … … 4963 4981 *3.25. UnifiedPower(Law and)Rg(Model)* 4964 4982 4965 The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale.4983 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 4966 4984 4967 4985 Note that the level 0 is an extra function that is the inverse
Note: See TracChangeset
for help on using the changeset viewer.