Changes in doc/guide/pd/polydispersity.rst [1f058ea:75e4319] in sasmodels
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/pd/polydispersity.rst
r1f058ea r75e4319 40 40 calculations are generally more robust with more data points or more angles. 41 41 42 The following fivedistribution functions are provided:42 The following six distribution functions are provided: 43 43 44 44 * *Rectangular Distribution* 45 * *Uniform Distribution* 45 46 * *Gaussian Distribution* 46 47 * *Lognormal Distribution* 47 48 * *Schulz Distribution* 48 49 * *Array Distribution* 50 * *Boltzmann Distribution* 49 51 50 52 These are all implemented as *number-average* distributions. … … 83 85 Rectangular distribution. 84 86 87 Uniform Distribution 88 ^^^^^^^^^^^^^^^^^^^^^^^^ 89 90 The Uniform Distribution is defined as 91 92 .. math:: 93 94 f(x) = \frac{1}{\text{Norm}} 95 \begin{cases} 96 1 & \text{for } |x - \bar x| \leq \sigma \\ 97 0 & \text{for } |x - \bar x| > \sigma 98 \end{cases} 99 100 where $\bar x$ is the mean of the distribution, $\sigma$ is the half-width, and 101 *Norm* is a normalization factor which is determined during the numerical 102 calculation. 103 104 Note that the polydispersity is given by 105 106 .. math:: \text{PD} = \sigma / \bar x 107 108 .. figure:: pd_uniform.jpg 109 110 Uniform distribution. 111 85 112 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 86 113 … … 181 208 ^^^^^^^^^^^^^^^^^^ 182 209 183 This user-definable distribution should be given as a s asimple ASCII text210 This user-definable distribution should be given as a simple ASCII text 184 211 file where the array is defined by two columns of numbers: $x$ and $f(x)$. 185 212 The $f(x)$ will be normalized to 1 during the computation. … … 200 227 given for the model will have no affect, and will be ignored when computing 201 228 the average. This means that any parameter with an array distribution will 202 not be fittable. 229 not be fitable. 230 231 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 232 233 Boltzmann Distribution 234 ^^^^^^^^^^^^^^^^^^^^^^ 235 236 The Boltzmann Distribution is defined as 237 238 .. math:: 239 240 f(x) = \frac{1}{\text{Norm}} 241 \exp\left(-\frac{ | x - \bar x | }{\sigma}\right) 242 243 where $\bar x$ is the mean of the distribution and *Norm* is a normalization 244 factor which is determined during the numerical calculation. 245 The width is defined as 246 247 .. math:: \sigma=\frac{k T}{E} 248 249 which is the inverse Boltzmann factor, 250 where $k$ is the Boltzmann constant, $T$ the temperature in Kelvin and $E$ a 251 characteristic energy per particle. 252 253 .. figure:: pd_boltzmann.jpg 254 255 Boltzmann distribution. 203 256 204 257 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Note: See TracChangeset
for help on using the changeset viewer.