- Timestamp:
- May 2, 2017 8:07:40 AM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- e123eb9
- Parents:
- b290a9e (diff), 658dd57 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Location:
- src
- Files:
-
- 48 edited
Legend:
- Unmodified
- Added
- Removed
-
src/examples/data_generator/testdata_generator.py
r959eb01 ra1b8fee 1 from __future__ import print_function 2 1 3 """ 2 4 Generate two correlated sets of data … … 42 44 # Write line data set 43 45 fd = open(filename, 'w') 44 print "Creating ", filename46 print("Creating ", filename) 45 47 fd.write("#y=A*x+B\n#A=%g\n#B=%g\n" % (self.constant_a, self.constant_b)) 46 48 -
src/sas/sascalc/calculator/sas_gen.py
r7432acb ra1b8fee 3 3 SAS generic computation and sld file readers 4 4 """ 5 from __future__ import print_function 6 5 7 import sas.sascalc.calculator.core.sld2i as mod 6 8 from sas.sascalc.calculator.BaseComponent import BaseComponent … … 558 560 vol_pix = np.append(vol_pix, vol) 559 561 except: 560 print "Error: set the sld of %s to zero"% atom_name562 print("Error: set the sld of %s to zero"% atom_name) 561 563 sld_n = np.append(sld_n, 0.0) 562 564 sld_mx = np.append(sld_mx, 0) … … 609 611 Write 610 612 """ 611 print "Not implemented... "613 print("Not implemented... ") 612 614 613 615 class SLDReader(object): … … 1044 1046 from mpl_toolkits.mplot3d import Axes3D 1045 1047 current_dir = os.path.abspath(os.path.curdir) 1046 print current_dir1048 print(current_dir) 1047 1049 for i in range(6): 1048 1050 current_dir, _ = os.path.split(current_dir) -
src/sas/sascalc/data_util/calcthread.py
r7432acb ra1b8fee 4 4 # \brief Abstract class for defining calculation threads. 5 5 # 6 from __future__ import print_function 6 7 7 8 import thread … … 295 296 """ 296 297 def __init__(self, n=20000): 297 print thread.get_ident()298 print(thread.get_ident()) 298 299 self.starttime = clock() 299 300 self.done = False … … 307 308 self.work2.queue(n) 308 309 self.work3.queue(n) 309 print "Expect updates from Main every second and from thread every 2.5 seconds"310 print ""310 print("Expect updates from Main every second and from thread every 2.5 seconds") 311 print("") 311 312 self.work.ready(.5) 312 313 while not self.done: 313 314 sleep(1) 314 print 315 clock() - self.starttime) 315 print("Main thread %d at %.2f" % (thread.get_ident(), 316 clock() - self.starttime)) 316 317 317 318 def update(self, i=0): 318 print 319 clock() - self.starttime) 319 print("Update i=%d from thread %d at %.2f" % (i, thread.get_ident(), 320 clock() - self.starttime)) 320 321 self.work.ready(2.5) 321 322 322 323 def complete(self, total=0.0): 323 print 324 print("Complete total=%g from thread %d at %.2f" % (total, 324 325 thread.get_ident(), 325 clock() - self.starttime) 326 clock() - self.starttime)) 326 327 self.done = True -
src/sas/sascalc/data_util/formatnum.py
r9a5097c ra1b8fee 37 37 formatter.compact flag. 38 38 """ 39 from __future__ import division 39 from __future__ import division, print_function 40 40 41 41 import math -
src/sas/sascalc/data_util/registry.py
rb699768 ra1b8fee 6 6 and registers the built-in file extensions. 7 7 """ 8 from __future__ import print_function 8 9 9 10 import os.path -
src/sas/sascalc/dataloader/data_info.py
r7432acb ra1b8fee 16 16 ###################################################################### 17 17 18 from __future__ import print_function 18 19 19 20 #TODO: Keep track of data manipulation in the 'process' data structure. -
src/sas/sascalc/dataloader/readers/IgorReader.py
r959eb01 ra1b8fee 12 12 #copyright 2008, University of Tennessee 13 13 ############################################################################# 14 from __future__ import print_function 15 14 16 import os 15 17 -
src/sas/sascalc/dataloader/readers/associations.py
r959eb01 ra1b8fee 14 14 #copyright 2009, University of Tennessee 15 15 ############################################################################# 16 from __future__ import print_function 17 16 18 import os 17 19 import sys … … 71 73 logger.error(msg) 72 74 else: 73 print "Could not find reader association settings\n %s [%s]" % (__file__, os.getcwd())75 print("Could not find reader association settings\n %s [%s]" % (__file__, os.getcwd())) 74 76 75 77 -
src/sas/sascalc/dataloader/readers/red2d_reader.py
r959eb01 ra1b8fee 9 9 #copyright 2008, University of Tennessee 10 10 ###################################################################### 11 from __future__ import print_function 12 11 13 import os 12 14 import numpy as np … … 82 84 detector = Detector() 83 85 if len(output.detector) > 0: 84 print str(output.detector[0])86 print(str(output.detector[0])) 85 87 output.detector.append(detector) 86 88 -
src/sas/sascalc/fit/AbstractFitEngine.py
r7432acb ra1b8fee 1 from __future__ import print_function 1 2 2 3 import copy … … 627 628 """ 628 629 """ 629 print str(self)630 print(str(self)) -
src/sas/sascalc/fit/Loader.py
rac07a3a ra1b8fee 1 from __future__ import print_function 2 1 3 # class Loader to load any king of file 2 4 #import wx … … 54 56 self.dx = np.zeros(len(self.x)) 55 57 except: 56 print "READ ERROR", line58 print("READ ERROR", line) 57 59 # Sanity check 58 60 if not len(self.x) == len(self.dx): … … 80 82 load = Load() 81 83 load.set_filename("testdata_line.txt") 82 print load.get_filename()84 print(load.get_filename()) 83 85 load.set_values() 84 print load.get_values()86 print(load.get_values()) 85 87 86 88 -
src/sas/sascalc/fit/expression.py
r9a5097c ra1b8fee 43 43 Ideally, this interface will change 44 44 """ 45 from __future__ import print_function 46 45 47 import math 46 48 import re -
src/sas/sascalc/pr/fit/AbstractFitEngine.py
r7432acb ra1b8fee 1 from __future__ import print_function 1 2 2 3 import copy … … 630 631 """ 631 632 """ 632 print str(self)633 print(str(self)) -
src/sas/sascalc/pr/fit/Loader.py
rac07a3a ra1b8fee 1 from __future__ import print_function 2 1 3 # class Loader to load any king of file 2 4 #import wx … … 54 56 self.dx = np.zeros(len(self.x)) 55 57 except: 56 print "READ ERROR", line58 print("READ ERROR", line) 57 59 # Sanity check 58 60 if not len(self.x) == len(self.dx): … … 80 82 load = Load() 81 83 load.set_filename("testdata_line.txt") 82 print load.get_filename()84 print(load.get_filename()) 83 85 load.set_values() 84 print load.get_values()86 print(load.get_values()) 85 87 86 88 -
src/sas/sascalc/pr/fit/expression.py
r9a5097c ra1b8fee 1 from __future__ import print_function 2 1 3 # This program is public domain 2 4 """ -
src/sas/sascalc/pr/num_term.py
r7432acb ra1b8fee 1 from __future__ import print_function 2 1 3 import math 2 4 import numpy as np … … 197 199 # Testing estimator 198 200 est = NTermEstimator(invert) 199 print est.num_terms()201 print(est.num_terms()) -
src/sas/sascalc/simulation/analmodelpy/tests/signon.py
rd85c194 r9c3d784 17 17 from analmodelpy import analmodelpy as analmodelpymodule 18 18 19 print "copyright information:"20 print " ", analmodelpy.copyright()21 print " ", analmodelpymodule.copyright()19 print("copyright information:") 20 print(" ", analmodelpy.copyright()) 21 print(" ", analmodelpymodule.copyright()) 22 22 23 print 24 print "module information:"25 print " file:", analmodelpymodule.__file__26 print " doc:", analmodelpymodule.__doc__27 print " contents:", dir(analmodelpymodule)23 print() 24 print("module information:") 25 print(" file:", analmodelpymodule.__file__) 26 print(" doc:", analmodelpymodule.__doc__) 27 print(" contents:", dir(analmodelpymodule)) 28 28 29 print 30 print analmodelpymodule.hello()29 print() 30 print(analmodelpymodule.hello()) 31 31 32 32 # version -
src/sas/sascalc/simulation/analmodelpy/tests/testanal_model.py
rd85c194 ra1b8fee 11 11 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 12 # 13 from __future__ import print_function 14 13 15 14 16 if __name__ == "__main__": … … 18 20 from SASsimulation import geoshapespy 19 21 20 print "copyright information:"21 print " ", analmodelpymodule.copyright()22 print("copyright information:") 23 print(" ", analmodelpymodule.copyright()) 22 24 23 print 24 print "module information:"25 print " file:", analmodelpymodule.__file__26 print " doc:", analmodelpymodule.__doc__27 print " contents:", dir(analmodelpymodule)25 print() 26 print("module information:") 27 print(" file:", analmodelpymodule.__file__) 28 print(" doc:", analmodelpymodule.__doc__) 29 print(" contents:", dir(analmodelpymodule)) 28 30 29 31 a = geoshapespy.new_sphere(1.0) -
src/sas/sascalc/simulation/geoshapespy/tests/testshapes.py
rd85c194 ra1b8fee 11 11 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 12 # 13 from __future__ import print_function 14 13 15 14 16 if __name__ == "__main__": … … 16 18 from SASsimulation import geoshapespy 17 19 18 print 19 print "module information:"20 print " file:", geoshapespy.__file__21 print " doc:", geoshapespy.__doc__22 print " contents:", dir(geoshapespy)20 print() 21 print("module information:") 22 print(" file:", geoshapespy.__file__) 23 print(" doc:", geoshapespy.__doc__) 24 print(" contents:", dir(geoshapespy)) 23 25 24 26 sp = geoshapespy.new_sphere(10) -
src/sas/sascalc/simulation/iqPy/tests/signon.py
rd85c194 ra1b8fee 11 11 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 12 # 13 from __future__ import print_function 14 13 15 14 16 if __name__ == "__main__": … … 17 19 from iqPy import iqPy as iqPymodule 18 20 19 print "copyright information:"20 print " ", iqPy.copyright()21 print " ", iqPymodule.copyright()21 print("copyright information:") 22 print(" ", iqPy.copyright()) 23 print(" ", iqPymodule.copyright()) 22 24 23 print 24 print "module information:"25 print " file:", iqPymodule.__file__26 print " doc:", iqPymodule.__doc__27 print " contents:", dir(iqPymodule)25 print() 26 print("module information:") 27 print(" file:", iqPymodule.__file__) 28 print(" doc:", iqPymodule.__doc__) 29 print(" contents:", dir(iqPymodule)) 28 30 29 print 31 print() 30 32 31 33 # version -
src/sas/sascalc/simulation/iqPy/tests/testiq.py
rd85c194 r9c3d784 17 17 iqPy.new_iq(10,0.01,0.4) 18 18 19 print "pass."19 print("pass.") 20 20 21 21 # version -
src/sas/sascalc/simulation/pointsmodelpy/tests/signon.py
rd85c194 ra1b8fee 11 11 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 12 # 13 from __future__ import print_function 14 13 15 14 16 if __name__ == "__main__": … … 17 19 from pointsmodelpy import pointsmodelpy as pointsmodelpymodule 18 20 19 print "copyright information:"20 print " ", pointsmodelpy.copyright()21 print " ", pointsmodelpymodule.copyright()21 print("copyright information:") 22 print(" ", pointsmodelpy.copyright()) 23 print(" ", pointsmodelpymodule.copyright()) 22 24 23 print 24 print "module information:"25 print " file:", pointsmodelpymodule.__file__26 print " doc:", pointsmodelpymodule.__doc__27 print " contents:", dir(pointsmodelpymodule)25 print() 26 print("module information:") 27 print(" file:", pointsmodelpymodule.__file__) 28 print(" doc:", pointsmodelpymodule.__doc__) 29 print(" contents:", dir(pointsmodelpymodule)) 28 30 29 print 30 print pointsmodelpymodule.hello()31 print() 32 print(pointsmodelpymodule.hello()) 31 33 32 34 # version -
src/sas/sascalc/simulation/pointsmodelpy/tests/test2dui.py
r959eb01 ra1b8fee 7 7 # Imports: 8 8 #-------------------------------------------------------------------------------- 9 from __future__ import print_function 9 10 10 11 import wx … … 46 47 47 48 data = ImageData(value_grid, index_vals) 48 print value_grid, index_vals49 print(value_grid, index_vals) 49 50 50 51 # Create the index axes -
src/sas/sascalc/simulation/pointsmodelpy/tests/testcomplexmodel.py
r959eb01 ra1b8fee 1 from __future__ import print_function 2 1 3 from sasModeling.pointsmodelpy import pointsmodelpy 2 4 from sasModeling.iqPy import iqPy 3 5 from sasModeling.geoshapespy import geoshapespy 6 4 7 5 8 #First testing: a normal case, a lores model holds a sphere … … 61 64 iqPy.OutputIQ(iqcomplex,"testcomplex2.iq") 62 65 63 print "p(r) is saved in testcomplex2.pr"64 print "I(Q) is saved in testcomplex2.iq"65 print "pass"66 print("p(r) is saved in testcomplex2.pr") 67 print("I(Q) is saved in testcomplex2.iq") 68 print("pass") 66 69 67 70 #testing 3, insert one empty pdbmodel and one loresmodel … … 88 91 iqPy.OutputIQ(iqcomplex,"testcomplex3.iq") 89 92 90 print "p(r) is saved in testcomplex3.pr"91 print "I(Q) is saved in testcomplex3.iq"92 print "pass"93 print("p(r) is saved in testcomplex3.pr") 94 print("I(Q) is saved in testcomplex3.iq") 95 print("pass") 93 96 94 97 # Test 2D complex model … … 106 109 pointsmodelpy.get_complexpoints(complex,vpcomplex); 107 110 108 print pointsmodelpy.get_complex_iq_2D(complex,vpcomplex,0.1,0.1);109 print pointsmodelpy.get_complex_iq_2D(complex,vpcomplex,0.01,0.1);111 print(pointsmodelpy.get_complex_iq_2D(complex,vpcomplex,0.1,0.1)); 112 print(pointsmodelpy.get_complex_iq_2D(complex,vpcomplex,0.01,0.1)); 110 113 111 114 -
src/sas/sascalc/simulation/pointsmodelpy/tests/testlores.py
r959eb01 ra1b8fee 1 from __future__ import print_function 2 3 1 4 if __name__ == "__main__": 2 5 … … 10 13 # print " ", pointsmodelpymodule.copyright() 11 14 12 print 13 print "module information:"14 print " file:", pointsmodelpy.__file__15 print " doc:", pointsmodelpy.__doc__16 print " contents:", dir(pointsmodelpy)17 print " contents:", dir(geoshapespy)15 print() 16 print("module information:") 17 print(" file:", pointsmodelpy.__file__) 18 print(" doc:", pointsmodelpy.__doc__) 19 print(" contents:", dir(pointsmodelpy)) 20 print(" contents:", dir(geoshapespy)) 18 21 19 22 # a = geoshapespy.new_singlehelix(10,2,30,2) … … 46 49 pointsmodelpy.outputPDB(lm,vp,"modelpy.pseudo.pdb") 47 50 48 print "calculating distance distribution"51 print("calculating distance distribution") 49 52 rmax = pointsmodelpy.get_lores_pr(lm,vp) 50 print "finish calculating get_lores_pr, and rmax is:", rmax53 print("finish calculating get_lores_pr, and rmax is:", rmax) 51 54 pointsmodelpy.outputPR(lm,"testlores.pr") 52 55 pointsmodelpy.get_lores_iq(lm,iq) … … 54 57 iqPy.OutputIQ(iq, "testlores.iq") 55 58 56 print "Testing get I from a single q"59 print("Testing get I from a single q") 57 60 result = pointsmodelpy.get_lores_i(lm,0.1) 58 print "The I(0.1) is: %s" % str(result)61 print("The I(0.1) is: %s" % str(result)) 59 62 60 63 # version -
src/sas/sascalc/simulation/pointsmodelpy/tests/testlores2d.py
r959eb01 ra1b8fee 1 from __future__ import print_function 2 3 1 4 def test_lores2d(phi): 2 5 from sasModeling.pointsmodelpy import pointsmodelpy … … 45 48 value_grid = zeros((100,100),Float) 46 49 width, height = value_grid.shape 47 print width,height50 print(width,height) 48 51 49 52 I = pointsmodelpy.calculateI_Qxy(lm,0.00001,0.000002) 50 print I53 print(I) 51 54 52 55 Imax = 0 … … 86 89 value_grid = zeros((100,100),Float) 87 90 width, height = value_grid.shape 88 print width,height91 print(width,height) 89 92 90 93 I = pointsmodelpy.calculateI_Qxy(lm,0.00001,0.000002) 91 print I94 print(I) 92 95 93 96 Imax = 0 … … 109 112 if __name__ == "__main__": 110 113 111 print "start to test lores 2D"114 print("start to test lores 2D") 112 115 # test_lores2d(10) 113 116 value_grid = get2d_2() 114 print value_grid115 print "pass"117 print(value_grid) 118 print("pass") -
src/sas/sasgui/guiframe/config.py
rea45bfe ra1b8fee 2 2 Application settings 3 3 """ 4 from __future__ import print_function 5 4 6 import time 5 7 import os … … 150 152 :TODO - Need method doc string 151 153 """ 152 print "%g: %s" % (time.clock(), message)154 print("%g: %s" % (time.clock(), message)) 153 155 154 156 if __EVT_DEBUG_2_FILE__: -
src/sas/sasgui/guiframe/data_panel.py
r959eb01 ra1b8fee 11 11 This module provides Graphic interface for the data_manager module. 12 12 """ 13 from __future__ import print_function 14 13 15 import wx 14 16 from wx.build import build_options … … 514 516 self.parent.save_data2d(data, default_name) 515 517 else: 516 print "unable to save this type of data"518 print("unable to save this type of data") 517 519 518 520 def layout_data_list(self): … … 1497 1499 except: 1498 1500 # raise 1499 print "error", sys.exc_value1501 print("error", sys.exc_value) 1500 1502 1501 1503 app.MainLoop() -
src/sas/sasgui/guiframe/data_processor.py
r7432acb ra1b8fee 18 18 19 19 """ 20 from __future__ import print_function 21 20 22 import os 21 23 import sys … … 2035 2037 frame.Show(True) 2036 2038 except: 2037 print sys.exc_value2039 print(sys.exc_value) 2038 2040 2039 2041 app.MainLoop() -
src/sas/sasgui/guiframe/dummyapp.py
r959eb01 ra1b8fee 3 3 Allows the user to set an external data manager 4 4 """ 5 from __future__ import print_function 6 5 7 import sas.sasgui.guiframe.gui_manager as gui_manager 6 8 … … 32 34 plug_menu.Append(id, '&Do something') 33 35 def _on_do_something(event): 34 print "Do something"36 print("Do something") 35 37 wx.EVT_MENU(self.parent, id, _on_do_something) 36 38 -
src/sas/sasgui/guiframe/gui_style.py
r959eb01 ra1b8fee 3 3 Provide the style for guiframe 4 4 """ 5 from __future__ import print_function 6 5 7 import wx 6 8 import os … … 79 81 if __name__ == "__main__": 80 82 81 print GUIFRAME.DEFAULT_STYLE82 print GUIFRAME.FLOATING_PANEL83 print GUIFRAME.SINGLE_APPLICATION83 print(GUIFRAME.DEFAULT_STYLE) 84 print(GUIFRAME.FLOATING_PANEL) 85 print(GUIFRAME.SINGLE_APPLICATION) 84 86 style = GUIFRAME.MULTIPLE_APPLICATIONS 85 87 style &= GUIFRAME.PLOTTING_ON 86 print style == GUIFRAME.PLOTTING_ON88 print(style == GUIFRAME.PLOTTING_ON) 87 89 style1 = GUIFRAME.MULTIPLE_APPLICATIONS 88 90 style1 &= (~GUIFRAME.MANAGER_ON) 89 print style1 == GUIFRAME.DEFAULT_STYLE90 print style191 print(style1 == GUIFRAME.DEFAULT_STYLE) 92 print(style1) -
src/sas/sasgui/guiframe/proxy.py
r463e7ffc ra1b8fee 1 1 #!/usr/bin/env python 2 2 # -*- coding: utf-8 -*- 3 from __future__ import print_function 4 3 5 import urllib2 4 6 import sys … … 157 159 response = c.connect() 158 160 if response is not None: 159 print 50 * '-'161 print(50 * '-') 160 162 content = json.loads(response.read().strip()) 161 163 pprint(content) -
src/sas/sasgui/perspectives/calculator/detector_editor.py
r959eb01 ra1b8fee 1 from __future__ import print_function 1 2 2 3 import wx … … 34 35 self.set_values() 35 36 except: 36 print "error", sys.exc_value37 print("error", sys.exc_value) 37 38 38 39 def _define_structure(self): -
src/sas/sasgui/perspectives/calculator/gen_scatter_panel.py
r7432acb ra1b8fee 3 3 This module relies on guiframe manager. 4 4 """ 5 from __future__ import print_function 5 6 6 7 import wx … … 1998 1999 self.panel.set_volume_ctl_val(str(val)) 1999 2000 except: 2000 print "self.panel is not initialized yet"2001 print("self.panel is not initialized yet") 2001 2002 2002 2003 def set_omfpanel_default_shap(self, shape): -
src/sas/sasgui/perspectives/calculator/image_viewer.py
r7432acb ra1b8fee 1 from __future__ import print_function 2 1 3 import os 2 4 import sys … … 78 80 wx.PostEvent(parent, StatusEvent(status=err_msg, info="error")) 79 81 else: 80 print err_msg82 print(err_msg) 81 83 82 84 def choose_data_file(self, location=None): … … 301 303 info="error")) 302 304 else: 303 print err_msg305 print(err_msg) 304 306 return flag 305 307 … … 332 334 info="error")) 333 335 else: 334 print err_msg336 print(err_msg) 335 337 return flag 336 338 … … 361 363 info="error")) 362 364 else: 363 print err_msg365 print(err_msg) 364 366 365 367 self.OnClose(event) -
src/sas/sasgui/perspectives/calculator/model_editor.py
r7432acb ra1b8fee 23 23 #copyright 2009, University of Tennessee 24 24 ################################################################################ 25 from __future__ import print_function 26 25 27 import wx 26 28 import sys … … 871 873 # Put the cursor at appropriate position 872 874 length = len(label) 873 print length875 print(length) 874 876 if label[length-1] == ')': 875 877 length -= 1 -
src/sas/sasgui/perspectives/fitting/basepage.py
r9c0f3c17 ra1b8fee 2 2 Base Page for fitting 3 3 """ 4 from __future__ import print_function 5 4 6 import sys 5 7 import os … … 657 659 # It seems MAC needs wxCallAfter 658 660 if event.GetId() == GUIFRAME_ID.COPYEX_ID: 659 print "copy excel"661 print("copy excel") 660 662 wx.CallAfter(self.get_copy_excel) 661 663 elif event.GetId() == GUIFRAME_ID.COPYLAT_ID: 662 print "copy latex"664 print("copy latex") 663 665 wx.CallAfter(self.get_copy_latex) 664 666 else: … … 3368 3370 except Exception: 3369 3371 logger.error(traceback.format_exc()) 3370 print 3371 sys.exc_info()[1] 3372 print("Error in BasePage._paste_poly_help: %s" % \ 3373 sys.exc_info()[1]) 3372 3374 3373 3375 def _set_disp_cb(self, isarray, item): … … 3398 3400 Moveit; This method doesn't belong here 3399 3401 """ 3400 print "BasicPage.update_pinhole_smear was called: skipping"3402 print("BasicPage.update_pinhole_smear was called: skipping") 3401 3403 return 3402 3404 … … 3574 3576 # check model type to show sizer 3575 3577 if self.model is not None: 3576 print "_set_model_sizer_selection: disabled."3578 print("_set_model_sizer_selection: disabled.") 3577 3579 # self._set_model_sizer_selection(self.model) 3578 3580 -
src/sas/sasgui/perspectives/fitting/fitting.py
r7432acb ra1b8fee 11 11 #copyright 2009, University of Tennessee 12 12 ################################################################################ 13 from __future__ import print_function 14 13 15 import re 14 16 import sys … … 1253 1255 """ 1254 1256 """ 1255 print "update_fit result", result1257 print("update_fit result", result) 1256 1258 1257 1259 def _batch_fit_complete(self, result, pars, page_id, … … 2046 2048 res = (fn - gn) / en 2047 2049 except ValueError: 2048 print "Unmatch lengths %s, %s, %s" % (len(fn), len(gn), len(en))2050 print("Unmatch lengths %s, %s, %s" % (len(fn), len(gn), len(en))) 2049 2051 return 2050 2052 -
src/sas/sasgui/perspectives/fitting/media/plugin.rst
r984f3fc r72100ee 538 538 sin, cos, tan, asin, acos, atan: 539 539 Trigonometry functions and inverses, operating on radians. 540 sinh, cos , tanh, asinh, acosh, atanh:540 sinh, cosh, tanh, asinh, acosh, atanh: 541 541 Hyperbolic trigonometry functions. 542 542 atan2(y,x): -
src/sas/sasgui/perspectives/fitting/models.py
r463e7ffc ra1b8fee 2 2 Utilities to manage models 3 3 """ 4 from __future__ import print_function 5 4 6 import traceback 5 7 import os … … 141 143 type, value, tb = sys.exc_info() 142 144 if type is not None and issubclass(type, py_compile.PyCompileError): 143 print "Problem with", repr(value)145 print("Problem with", repr(value)) 144 146 raise type, value, tb 145 147 return 1 -
src/sas/sasgui/perspectives/pr/pr.py
r7432acb ra1b8fee 15 15 # Make sure the option of saving each curve is available 16 16 # Use the I(q) curve as input and compare the output to P(r) 17 from __future__ import print_function 17 18 18 19 import sys … … 230 231 out, cov = pr.pr_fit() 231 232 for i in range(len(out)): 232 print "%g +- %g" % (out[i], math.sqrt(cov[i][i]))233 print("%g +- %g" % (out[i], math.sqrt(cov[i][i]))) 233 234 234 235 # Show input P(r) … … 318 319 except: 319 320 err[i] = 1.0 320 print "Error getting error", value, x[i]321 print("Error getting error", value, x[i]) 321 322 322 323 new_plot = Data1D(x, y) -
src/sas/sasgui/perspectives/simulation/ShapeParameters.py
rd85c194 ra1b8fee 8 8 copyright 2009, University of Tennessee 9 9 """ 10 from __future__ import print_function 11 10 12 import wx 11 13 import sys … … 312 314 self.parent.GetSizer().Layout() 313 315 except: 314 print "TODO: move the Layout call of editShape up to the caller"316 print("TODO: move the Layout call of editShape up to the caller") 315 317 316 318 def _readCtrlFloat(self, ctrl): … … 392 394 self.current_shape.params[item[0]] = tmp 393 395 except: 394 print "Could not create"395 print sys.exc_value396 print("Could not create") 397 print(sys.exc_value) 396 398 397 399 def _onCreate(self, evt): … … 485 487 indices = self.shape_listbox.GetSelections() 486 488 if len(indices)>0: 487 print "NOT YET IMPLMENTED"488 print "renaming", self.shape_listbox.GetString(indices[0])489 489 print("NOT YET IMPLMENTED") 490 print("renaming", self.shape_listbox.GetString(indices[0])) 491 -
src/sas/sasgui/plottools/PlotPanel.py
r7432acb ra1b8fee 2 2 Plot panel. 3 3 """ 4 from __future__ import print_function 5 4 6 import logging 5 7 import traceback … … 38 40 def show_tree(obj, d=0): 39 41 """Handy function for displaying a tree of graph objects""" 40 print "%s%s" % ("-"*d, obj.__class__.__name__)42 print("%s%s" % ("-"*d, obj.__class__.__name__)) 41 43 if 'get_children' in dir(obj): 42 44 for a in obj.get_children(): show_tree(a, d + 1) … … 2014 2016 self.toolbar.copy_figure(self.canvas) 2015 2017 except: 2016 print "Error in copy Image"2018 print("Error in copy Image") 2017 2019 2018 2020 -
src/sas/sasgui/plottools/binder.py
r463e7ffc ra1b8fee 2 2 Extension to MPL to support the binding of artists to key/mouse events. 3 3 """ 4 from __future__ import print_function 5 4 6 import sys 5 7 import logging … … 63 65 ] 64 66 except: 65 print "bypassing scroll_event: wrong matplotlib version"67 print("bypassing scroll_event: wrong matplotlib version") 66 68 self._connections = [ 67 69 canvas.mpl_connect('motion_notify_event', self._onMotion), -
src/sas/sasgui/plottools/convert_units.py
r959eb01 ra1b8fee 3 3 This is a cleaned up version of unitConverter.py 4 4 """ 5 from __future__ import print_function 6 5 7 import re 6 8 import string … … 68 70 unit8 = "m/s^{4}" # x^2 (m/s^{4})^{2} 69 71 70 print "this unit1 %s ,its powerer %s , and value %s" % (unit1, 1, convert_unit(1, unit1))71 print "this unit2 %s ,its powerer %s , and value %s" % (unit2, 1, convert_unit(1, unit2))72 print "this unit3 %s ,its powerer %s , and value %s" % (unit3, 2, convert_unit(2, unit3))73 print "this unit4 %s ,its powerer %s , and value %s" % (unit4, -1, convert_unit(-1, unit4))74 print "this unit5 %s ,its powerer %s , and value %s" % (unit5, 2, convert_unit(2, unit5))75 print "this unit6 %s ,its powerer %s , and value %s" % (unit6, 2, convert_unit(2, unit6))76 print "this unit7 %s ,its powerer %s , and value %s" % (unit7, -1, convert_unit(-1, unit7))77 print "this unit8 %s ,its powerer %s , and value %s" % (unit8, 2, convert_unit(2, unit8))78 print "this unit9 %s ,its powerer %s , and value %s" % (unit9, 2, convert_unit(2, unit9))72 print("this unit1 %s ,its powerer %s , and value %s" % (unit1, 1, convert_unit(1, unit1))) 73 print("this unit2 %s ,its powerer %s , and value %s" % (unit2, 1, convert_unit(1, unit2))) 74 print("this unit3 %s ,its powerer %s , and value %s" % (unit3, 2, convert_unit(2, unit3))) 75 print("this unit4 %s ,its powerer %s , and value %s" % (unit4, -1, convert_unit(-1, unit4))) 76 print("this unit5 %s ,its powerer %s , and value %s" % (unit5, 2, convert_unit(2, unit5))) 77 print("this unit6 %s ,its powerer %s , and value %s" % (unit6, 2, convert_unit(2, unit6))) 78 print("this unit7 %s ,its powerer %s , and value %s" % (unit7, -1, convert_unit(-1, unit7))) 79 print("this unit8 %s ,its powerer %s , and value %s" % (unit8, 2, convert_unit(2, unit8))) 80 print("this unit9 %s ,its powerer %s , and value %s" % (unit9, 2, convert_unit(2, unit9))) -
src/sas/sasgui/plottools/fittings.py
rac07a3a ra1b8fee 14 14 15 15 """ 16 from __future__ import print_function 17 16 18 from scipy import optimize 17 19 … … 106 108 chisqr, out, cov = sasfit(line, [cstA, cstB], event.x, y, 0) 107 109 # print "Output parameters:", out 108 print "The right answer is [70.0, 1.0]"109 print chisqr, out, cov110 print("The right answer is [70.0, 1.0]") 111 print(chisqr, out, cov) -
src/sas/sasgui/plottools/plottable_interactor.py
r45dffa69 ra1b8fee 2 2 This module allows more interaction with the plot 3 3 """ 4 from __future__ import print_function 5 4 6 from BaseInteractor import _BaseInteractor 7 5 8 6 9 class PointInteractor(_BaseInteractor): … … 156 159 157 160 def clear(self): 158 print "plottable_interactor.clear()"161 print("plottable_interactor.clear()") 159 162 160 163 def _on_click(self, evt): -
src/sas/sascalc/dataloader/manipulations.py
r7432acb rb290a9e 1 from __future__ import division 1 2 """ 2 3 Data manipulations for 2D data sets. 3 4 Using the meta data information, various types of averaging 4 5 are performed in Q-space 6 7 To test this module use: 8 ``` 9 cd test 10 PYTHONPATH=../src/ python2 -m sasdataloader.test.utest_averaging DataInfoTests.test_sectorphi_quarter 11 ``` 5 12 """ 6 13 ##################################################################### 7 # This software was developed by the University of Tennessee as part of the8 # Distributed Data Analysis of Neutron Scattering Experiments (DANSE)9 # project funded by the US National Science Foundation.10 # See the license text in license.txt11 # copyright 2008, University of Tennessee14 # This software was developed by the University of Tennessee as part of the 15 # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) 16 # project funded by the US National Science Foundation. 17 # See the license text in license.txt 18 # copyright 2008, University of Tennessee 12 19 ###################################################################### 13 20 14 #TODO: copy the meta data from the 2D object to the resulting 1D object 21 22 # TODO: copy the meta data from the 2D object to the resulting 1D object 15 23 import math 16 import numpy 24 import numpy as np 25 import sys 17 26 18 27 #from data_info import plottable_2D … … 70 79 return phi_out 71 80 72 73 def reader2D_converter(data2d=None):74 """75 convert old 2d format opened by IhorReader or danse_reader76 to new Data2D format77 78 :param data2d: 2d array of Data2D object79 :return: 1d arrays of Data2D object80 81 """82 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None:83 raise ValueError, "Can't convert this data: data=None..."84 new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins), 1))85 new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins), 1))86 new_y = new_y.swapaxes(0, 1)87 88 new_data = data2d.data.flatten()89 qx_data = new_x.flatten()90 qy_data = new_y.flatten()91 q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data)92 if data2d.err_data is None or numpy.any(data2d.err_data <= 0):93 new_err_data = numpy.sqrt(numpy.abs(new_data))94 else:95 new_err_data = data2d.err_data.flatten()96 mask = numpy.ones(len(new_data), dtype=bool)97 98 #TODO: make sense of the following two lines...99 #from sas.sascalc.dataloader.data_info import Data2D100 #output = Data2D()101 output = data2d102 output.data = new_data103 output.err_data = new_err_data104 output.qx_data = qx_data105 output.qy_data = qy_data106 output.q_data = q_data107 output.mask = mask108 109 return output110 111 112 class _Slab(object):113 """114 Compute average I(Q) for a region of interest115 """116 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0,117 y_max=0.0, bin_width=0.001):118 # Minimum Qx value [A-1]119 self.x_min = x_min120 # Maximum Qx value [A-1]121 self.x_max = x_max122 # Minimum Qy value [A-1]123 self.y_min = y_min124 # Maximum Qy value [A-1]125 self.y_max = y_max126 # Bin width (step size) [A-1]127 self.bin_width = bin_width128 # If True, I(|Q|) will be return, otherwise,129 # negative q-values are allowed130 self.fold = False131 132 def __call__(self, data2D):133 return NotImplemented134 135 def _avg(self, data2D, maj):136 """137 Compute average I(Q_maj) for a region of interest.138 The major axis is defined as the axis of Q_maj.139 The minor axis is the axis that we average over.140 141 :param data2D: Data2D object142 :param maj_min: min value on the major axis143 :return: Data1D object144 """145 if len(data2D.detector) > 1:146 msg = "_Slab._avg: invalid number of "147 msg += " detectors: %g" % len(data2D.detector)148 raise RuntimeError, msg149 150 # Get data151 data = data2D.data[numpy.isfinite(data2D.data)]152 err_data = data2D.err_data[numpy.isfinite(data2D.data)]153 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]154 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]155 156 # Build array of Q intervals157 if maj == 'x':158 if self.fold:159 x_min = 0160 else:161 x_min = self.x_min162 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width))163 elif maj == 'y':164 if self.fold:165 y_min = 0166 else:167 y_min = self.y_min168 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width))169 else:170 raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj)171 172 x = numpy.zeros(nbins)173 y = numpy.zeros(nbins)174 err_y = numpy.zeros(nbins)175 y_counts = numpy.zeros(nbins)176 177 # Average pixelsize in q space178 for npts in range(len(data)):179 # default frac180 frac_x = 0181 frac_y = 0182 # get ROI183 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]:184 frac_x = 1185 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]:186 frac_y = 1187 frac = frac_x * frac_y188 189 if frac == 0:190 continue191 # binning: find axis of q192 if maj == 'x':193 q_value = qx_data[npts]194 min_value = x_min195 if maj == 'y':196 q_value = qy_data[npts]197 min_value = y_min198 if self.fold and q_value < 0:199 q_value = -q_value200 # bin201 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1202 203 # skip outside of max bins204 if i_q < 0 or i_q >= nbins:205 continue206 207 #TODO: find better definition of x[i_q] based on q_data208 # min_value + (i_q + 1) * self.bin_width / 2.0209 x[i_q] += frac * q_value210 y[i_q] += frac * data[npts]211 212 if err_data is None or err_data[npts] == 0.0:213 if data[npts] < 0:214 data[npts] = -data[npts]215 err_y[i_q] += frac * frac * data[npts]216 else:217 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts]218 y_counts[i_q] += frac219 220 # Average the sums221 for n in range(nbins):222 err_y[n] = math.sqrt(err_y[n])223 224 err_y = err_y / y_counts225 y = y / y_counts226 x = x / y_counts227 idx = (numpy.isfinite(y) & numpy.isfinite(x))228 229 if not idx.any():230 msg = "Average Error: No points inside ROI to average..."231 raise ValueError, msg232 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx])233 234 235 class SlabY(_Slab):236 """237 Compute average I(Qy) for a region of interest238 """239 def __call__(self, data2D):240 """241 Compute average I(Qy) for a region of interest242 243 :param data2D: Data2D object244 :return: Data1D object245 """246 return self._avg(data2D, 'y')247 248 249 class SlabX(_Slab):250 """251 Compute average I(Qx) for a region of interest252 """253 def __call__(self, data2D):254 """255 Compute average I(Qx) for a region of interest256 :param data2D: Data2D object257 :return: Data1D object258 """259 return self._avg(data2D, 'x')260 261 262 class Boxsum(object):263 """264 Perform the sum of counts in a 2D region of interest.265 """266 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):267 # Minimum Qx value [A-1]268 self.x_min = x_min269 # Maximum Qx value [A-1]270 self.x_max = x_max271 # Minimum Qy value [A-1]272 self.y_min = y_min273 # Maximum Qy value [A-1]274 self.y_max = y_max275 276 def __call__(self, data2D):277 """278 Perform the sum in the region of interest279 280 :param data2D: Data2D object281 :return: number of counts, error on number of counts,282 number of points summed283 """284 y, err_y, y_counts = self._sum(data2D)285 286 # Average the sums287 counts = 0 if y_counts == 0 else y288 error = 0 if y_counts == 0 else math.sqrt(err_y)289 290 # Added y_counts to return, SMK & PDB, 04/03/2013291 return counts, error, y_counts292 293 def _sum(self, data2D):294 """295 Perform the sum in the region of interest296 297 :param data2D: Data2D object298 :return: number of counts,299 error on number of counts, number of entries summed300 """301 if len(data2D.detector) > 1:302 msg = "Circular averaging: invalid number "303 msg += "of detectors: %g" % len(data2D.detector)304 raise RuntimeError, msg305 # Get data306 data = data2D.data[numpy.isfinite(data2D.data)]307 err_data = data2D.err_data[numpy.isfinite(data2D.data)]308 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]309 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]310 311 y = 0.0312 err_y = 0.0313 y_counts = 0.0314 315 # Average pixelsize in q space316 for npts in range(len(data)):317 # default frac318 frac_x = 0319 frac_y = 0320 321 # get min and max at each points322 qx = qx_data[npts]323 qy = qy_data[npts]324 325 # get the ROI326 if self.x_min <= qx and self.x_max > qx:327 frac_x = 1328 if self.y_min <= qy and self.y_max > qy:329 frac_y = 1330 #Find the fraction along each directions331 frac = frac_x * frac_y332 if frac == 0:333 continue334 y += frac * data[npts]335 if err_data is None or err_data[npts] == 0.0:336 if data[npts] < 0:337 data[npts] = -data[npts]338 err_y += frac * frac * data[npts]339 else:340 err_y += frac * frac * err_data[npts] * err_data[npts]341 y_counts += frac342 return y, err_y, y_counts343 344 345 class Boxavg(Boxsum):346 """347 Perform the average of counts in a 2D region of interest.348 """349 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):350 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max,351 y_min=y_min, y_max=y_max)352 353 def __call__(self, data2D):354 """355 Perform the sum in the region of interest356 357 :param data2D: Data2D object358 :return: average counts, error on average counts359 360 """361 y, err_y, y_counts = self._sum(data2D)362 363 # Average the sums364 counts = 0 if y_counts == 0 else y / y_counts365 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts366 367 return counts, error368 369 370 81 def get_pixel_fraction_square(x, xmin, xmax): 371 82 """ … … 390 101 return 1.0 391 102 392 393 class CircularAverage(object): 394 """ 395 Perform circular averaging on 2D data 396 397 The data returned is the distribution of counts 398 as a function of Q 399 """ 400 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 401 # Minimum radius included in the average [A-1] 402 self.r_min = r_min 403 # Maximum radius included in the average [A-1] 404 self.r_max = r_max 405 # Bin width (step size) [A-1] 406 self.bin_width = bin_width 407 408 def __call__(self, data2D, ismask=False): 409 """ 410 Perform circular averaging on the data 411 412 :param data2D: Data2D object 413 :return: Data1D object 414 """ 415 # Get data W/ finite values 416 data = data2D.data[numpy.isfinite(data2D.data)] 417 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 418 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 419 mask_data = data2D.mask[numpy.isfinite(data2D.data)] 420 421 dq_data = None 422 423 # Get the dq for resolution averaging 424 if data2D.dqx_data is not None and data2D.dqy_data is not None: 425 # The pinholes and det. pix contribution present 426 # in both direction of the 2D which must be subtracted when 427 # converting to 1D: dq_overlap should calculated ideally at 428 # q = 0. Note This method works on only pinhole geometry. 429 # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 430 z_max = max(data2D.q_data) 431 z_min = min(data2D.q_data) 432 x_max = data2D.dqx_data[data2D.q_data[z_max]] 433 x_min = data2D.dqx_data[data2D.q_data[z_min]] 434 y_max = data2D.dqy_data[data2D.q_data[z_max]] 435 y_min = data2D.dqy_data[data2D.q_data[z_min]] 436 # Find qdx at q = 0 437 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 438 # when extrapolation goes wrong 439 if dq_overlap_x > min(data2D.dqx_data): 440 dq_overlap_x = min(data2D.dqx_data) 441 dq_overlap_x *= dq_overlap_x 442 # Find qdx at q = 0 443 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 444 # when extrapolation goes wrong 445 if dq_overlap_y > min(data2D.dqy_data): 446 dq_overlap_y = min(data2D.dqy_data) 447 # get dq at q=0. 448 dq_overlap_y *= dq_overlap_y 449 450 dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 451 # Final protection of dq 452 if dq_overlap < 0: 453 dq_overlap = y_min 454 dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] 455 dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap 456 # def; dqx_data = dq_r dqy_data = dq_phi 457 # Convert dq 2D to 1D here 458 dqx = dqx_data * dqx_data 459 dqy = dqy_data * dqy_data 460 dq_data = numpy.add(dqx, dqy) 461 dq_data = numpy.sqrt(dq_data) 462 463 #q_data_max = numpy.max(q_data) 464 if len(data2D.q_data) is None: 465 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 466 raise RuntimeError, msg 467 468 # Build array of Q intervals 469 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 470 471 x = numpy.zeros(nbins) 472 y = numpy.zeros(nbins) 473 err_y = numpy.zeros(nbins) 474 err_x = numpy.zeros(nbins) 475 y_counts = numpy.zeros(nbins) 476 477 for npt in range(len(data)): 478 479 if ismask and not mask_data[npt]: 480 continue 481 482 frac = 0 483 484 # q-value at the pixel (j,i) 485 q_value = q_data[npt] 486 data_n = data[npt] 487 488 ## No need to calculate the frac when all data are within range 489 if self.r_min >= self.r_max: 490 raise ValueError, "Limit Error: min > max" 491 492 if self.r_min <= q_value and q_value <= self.r_max: 493 frac = 1 494 if frac == 0: 495 continue 496 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 497 498 # Take care of the edge case at phi = 2pi. 499 if i_q == nbins: 500 i_q = nbins - 1 501 y[i_q] += frac * data_n 502 # Take dqs from data to get the q_average 503 x[i_q] += frac * q_value 504 if err_data is None or err_data[npt] == 0.0: 505 if data_n < 0: 506 data_n = -data_n 507 err_y[i_q] += frac * frac * data_n 508 else: 509 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 510 if dq_data is not None: 511 # To be consistent with dq calculation in 1d reduction, 512 # we need just the averages (not quadratures) because 513 # it should not depend on the number of the q points 514 # in the qr bins. 515 err_x[i_q] += frac * dq_data[npt] 516 else: 517 err_x = None 518 y_counts[i_q] += frac 519 520 # Average the sums 521 for n in range(nbins): 522 if err_y[n] < 0: 523 err_y[n] = -err_y[n] 524 err_y[n] = math.sqrt(err_y[n]) 525 #if err_x is not None: 526 # err_x[n] = math.sqrt(err_x[n]) 527 528 err_y = err_y / y_counts 529 err_y[err_y == 0] = numpy.average(err_y) 530 y = y / y_counts 531 x = x / y_counts 532 idx = (numpy.isfinite(y)) & (numpy.isfinite(x)) 533 534 if err_x is not None: 535 d_x = err_x[idx] / y_counts[idx] 536 else: 537 d_x = None 538 539 if not idx.any(): 540 msg = "Average Error: No points inside ROI to average..." 541 raise ValueError, msg 542 543 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 544 545 546 class Ring(object): 547 """ 548 Defines a ring on a 2D data set. 549 The ring is defined by r_min, r_max, and 550 the position of the center of the ring. 551 552 The data returned is the distribution of counts 553 around the ring as a function of phi. 554 555 Phi_min and phi_max should be defined between 0 and 2*pi 556 in anti-clockwise starting from the x- axis on the left-hand side 557 """ 558 #Todo: remove center. 559 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 560 # Minimum radius 561 self.r_min = r_min 562 # Maximum radius 563 self.r_max = r_max 564 # Center of the ring in x 565 self.center_x = center_x 566 # Center of the ring in y 567 self.center_y = center_y 568 # Number of angular bins 569 self.nbins_phi = nbins 570 571 572 def __call__(self, data2D): 573 """ 574 Apply the ring to the data set. 575 Returns the angular distribution for a given q range 576 577 :param data2D: Data2D object 578 579 :return: Data1D object 580 """ 581 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 582 raise RuntimeError, "Ring averaging only take plottable_2D objects" 583 584 Pi = math.pi 585 586 # Get data 587 data = data2D.data[numpy.isfinite(data2D.data)] 588 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 589 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 590 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] 591 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] 592 593 # Set space for 1d outputs 594 phi_bins = numpy.zeros(self.nbins_phi) 595 phi_counts = numpy.zeros(self.nbins_phi) 596 phi_values = numpy.zeros(self.nbins_phi) 597 phi_err = numpy.zeros(self.nbins_phi) 598 599 # Shift to apply to calculated phi values in order 600 # to center first bin at zero 601 phi_shift = Pi / self.nbins_phi 602 603 for npt in range(len(data)): 604 frac = 0 605 # q-value at the point (npt) 606 q_value = q_data[npt] 607 data_n = data[npt] 608 609 # phi-value at the point (npt) 610 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 611 612 if self.r_min <= q_value and q_value <= self.r_max: 613 frac = 1 614 if frac == 0: 615 continue 616 # binning 617 i_phi = int(math.floor((self.nbins_phi) * \ 618 (phi_value + phi_shift) / (2 * Pi))) 619 620 # Take care of the edge case at phi = 2pi. 621 if i_phi >= self.nbins_phi: 622 i_phi = 0 623 phi_bins[i_phi] += frac * data[npt] 624 625 if err_data is None or err_data[npt] == 0.0: 626 if data_n < 0: 627 data_n = -data_n 628 phi_err[i_phi] += frac * frac * math.fabs(data_n) 629 else: 630 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 631 phi_counts[i_phi] += frac 632 633 for i in range(self.nbins_phi): 634 phi_bins[i] = phi_bins[i] / phi_counts[i] 635 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 636 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 637 638 idx = (numpy.isfinite(phi_bins)) 639 640 if not idx.any(): 641 msg = "Average Error: No points inside ROI to average..." 642 raise ValueError, msg 643 #elif len(phi_bins[idx])!= self.nbins_phi: 644 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 645 #,"empty bin(s) due to tight binning..." 646 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 647 103 def get_intercept(q, q_0, q_1): 104 """ 105 Returns the fraction of the side at which the 106 q-value intercept the pixel, None otherwise. 107 The values returned is the fraction ON THE SIDE 108 OF THE LOWEST Q. :: 109 110 A B 111 +-----------+--------+ <--- pixel size 112 0 1 113 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 114 if Q_1 > Q_0, A is returned 115 if Q_1 < Q_0, B is returned 116 if Q is outside the range of [Q_0, Q_1], None is returned 117 118 """ 119 if q_1 > q_0: 120 if q > q_0 and q <= q_1: 121 return (q - q_0) / (q_1 - q_0) 122 else: 123 if q > q_1 and q <= q_0: 124 return (q - q_1) / (q_0 - q_1) 125 return None 648 126 649 127 def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): … … 710 188 return frac_max 711 189 712 713 def get_intercept(q, q_0, q_1): 714 """ 715 Returns the fraction of the side at which the 716 q-value intercept the pixel, None otherwise. 717 The values returned is the fraction ON THE SIDE 718 OF THE LOWEST Q. :: 719 720 A B 721 +-----------+--------+ <--- pixel size 722 0 1 723 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 724 if Q_1 > Q_0, A is returned 725 if Q_1 < Q_0, B is returned 726 if Q is outside the range of [Q_0, Q_1], None is returned 727 728 """ 729 if q_1 > q_0: 730 if q > q_0 and q <= q_1: 731 return (q - q_0) / (q_1 - q_0) 190 def get_dq_data(data2D): 191 ''' 192 Get the dq for resolution averaging 193 The pinholes and det. pix contribution present 194 in both direction of the 2D which must be subtracted when 195 converting to 1D: dq_overlap should calculated ideally at 196 q = 0. Note This method works on only pinhole geometry. 197 Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 198 ''' 199 z_max = max(data2D.q_data) 200 z_min = min(data2D.q_data) 201 x_max = data2D.dqx_data[data2D.q_data[z_max]] 202 x_min = data2D.dqx_data[data2D.q_data[z_min]] 203 y_max = data2D.dqy_data[data2D.q_data[z_max]] 204 y_min = data2D.dqy_data[data2D.q_data[z_min]] 205 # Find qdx at q = 0 206 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 207 # when extrapolation goes wrong 208 if dq_overlap_x > min(data2D.dqx_data): 209 dq_overlap_x = min(data2D.dqx_data) 210 dq_overlap_x *= dq_overlap_x 211 # Find qdx at q = 0 212 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 213 # when extrapolation goes wrong 214 if dq_overlap_y > min(data2D.dqy_data): 215 dq_overlap_y = min(data2D.dqy_data) 216 # get dq at q=0. 217 dq_overlap_y *= dq_overlap_y 218 219 dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 220 # Final protection of dq 221 if dq_overlap < 0: 222 dq_overlap = y_min 223 dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] 224 dqy_data = data2D.dqy_data[np.isfinite( 225 data2D.data)] - dq_overlap 226 # def; dqx_data = dq_r dqy_data = dq_phi 227 # Convert dq 2D to 1D here 228 dq_data = np.sqrt(dqx_data**2 + dqx_data**2) 229 return dq_data 230 231 ################################################################################ 232 233 def reader2D_converter(data2d=None): 234 """ 235 convert old 2d format opened by IhorReader or danse_reader 236 to new Data2D format 237 This is mainly used by the Readers 238 239 :param data2d: 2d array of Data2D object 240 :return: 1d arrays of Data2D object 241 242 """ 243 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: 244 raise ValueError("Can't convert this data: data=None...") 245 new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1)) 246 new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1)) 247 new_y = new_y.swapaxes(0, 1) 248 249 new_data = data2d.data.flatten() 250 qx_data = new_x.flatten() 251 qy_data = new_y.flatten() 252 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 253 if data2d.err_data is None or np.any(data2d.err_data <= 0): 254 new_err_data = np.sqrt(np.abs(new_data)) 732 255 else: 733 if q > q_1 and q <= q_0: 734 return (q - q_1) / (q_0 - q_1) 735 return None 736 256 new_err_data = data2d.err_data.flatten() 257 mask = np.ones(len(new_data), dtype=bool) 258 259 # TODO: make sense of the following two lines... 260 #from sas.sascalc.dataloader.data_info import Data2D 261 #output = Data2D() 262 output = data2d 263 output.data = new_data 264 output.err_data = new_err_data 265 output.qx_data = qx_data 266 output.qy_data = qy_data 267 output.q_data = q_data 268 output.mask = mask 269 270 return output 271 272 ################################################################################ 273 274 class Binning(object): 275 ''' 276 This class just creates a binning object 277 either linear or log 278 ''' 279 280 def __init__(self, min_value, max_value, n_bins, base=None): 281 ''' 282 if base is None: Linear binning 283 ''' 284 self.min = min_value if min_value > 0 else 0.0001 285 self.max = max_value 286 self.n_bins = n_bins 287 self.base = base 288 289 def get_bin_index(self, value): 290 ''' 291 The general formula logarithm binning is: 292 bin = floor(N * (log(x) - log(min)) / (log(max) - log(min))) 293 ''' 294 if self.base: 295 temp_x = self.n_bins * (math.log(value, self.base) - math.log(self.min, self.base)) 296 temp_y = math.log(self.max, self.base) - math.log(self.min, self.base) 297 else: 298 temp_x = self.n_bins * (value - self.min) 299 temp_y = self.max - self.min 300 # Bin index calulation 301 return int(math.floor(temp_x / temp_y)) 302 303 304 ################################################################################ 305 306 class _Slab(object): 307 """ 308 Compute average I(Q) for a region of interest 309 """ 310 311 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, 312 y_max=0.0, bin_width=0.001): 313 # Minimum Qx value [A-1] 314 self.x_min = x_min 315 # Maximum Qx value [A-1] 316 self.x_max = x_max 317 # Minimum Qy value [A-1] 318 self.y_min = y_min 319 # Maximum Qy value [A-1] 320 self.y_max = y_max 321 # Bin width (step size) [A-1] 322 self.bin_width = bin_width 323 # If True, I(|Q|) will be return, otherwise, 324 # negative q-values are allowed 325 self.fold = False 326 327 def __call__(self, data2D): 328 return NotImplemented 329 330 def _avg(self, data2D, maj): 331 """ 332 Compute average I(Q_maj) for a region of interest. 333 The major axis is defined as the axis of Q_maj. 334 The minor axis is the axis that we average over. 335 336 :param data2D: Data2D object 337 :param maj_min: min value on the major axis 338 :return: Data1D object 339 """ 340 if len(data2D.detector) > 1: 341 msg = "_Slab._avg: invalid number of " 342 msg += " detectors: %g" % len(data2D.detector) 343 raise RuntimeError(msg) 344 345 # Get data 346 data = data2D.data[np.isfinite(data2D.data)] 347 err_data = data2D.err_data[np.isfinite(data2D.data)] 348 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 349 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 350 351 # Build array of Q intervals 352 if maj == 'x': 353 if self.fold: 354 x_min = 0 355 else: 356 x_min = self.x_min 357 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) 358 elif maj == 'y': 359 if self.fold: 360 y_min = 0 361 else: 362 y_min = self.y_min 363 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) 364 else: 365 raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj)) 366 367 x = np.zeros(nbins) 368 y = np.zeros(nbins) 369 err_y = np.zeros(nbins) 370 y_counts = np.zeros(nbins) 371 372 # Average pixelsize in q space 373 for npts in range(len(data)): 374 # default frac 375 frac_x = 0 376 frac_y = 0 377 # get ROI 378 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: 379 frac_x = 1 380 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: 381 frac_y = 1 382 frac = frac_x * frac_y 383 384 if frac == 0: 385 continue 386 # binning: find axis of q 387 if maj == 'x': 388 q_value = qx_data[npts] 389 min_value = x_min 390 if maj == 'y': 391 q_value = qy_data[npts] 392 min_value = y_min 393 if self.fold and q_value < 0: 394 q_value = -q_value 395 # bin 396 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 397 398 # skip outside of max bins 399 if i_q < 0 or i_q >= nbins: 400 continue 401 402 # TODO: find better definition of x[i_q] based on q_data 403 # min_value + (i_q + 1) * self.bin_width / 2.0 404 x[i_q] += frac * q_value 405 y[i_q] += frac * data[npts] 406 407 if err_data is None or err_data[npts] == 0.0: 408 if data[npts] < 0: 409 data[npts] = -data[npts] 410 err_y[i_q] += frac * frac * data[npts] 411 else: 412 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] 413 y_counts[i_q] += frac 414 415 # Average the sums 416 for n in range(nbins): 417 err_y[n] = math.sqrt(err_y[n]) 418 419 err_y = err_y / y_counts 420 y = y / y_counts 421 x = x / y_counts 422 idx = (np.isfinite(y) & np.isfinite(x)) 423 424 if not idx.any(): 425 msg = "Average Error: No points inside ROI to average..." 426 raise ValueError(msg) 427 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) 428 429 430 class SlabY(_Slab): 431 """ 432 Compute average I(Qy) for a region of interest 433 """ 434 435 def __call__(self, data2D): 436 """ 437 Compute average I(Qy) for a region of interest 438 439 :param data2D: Data2D object 440 :return: Data1D object 441 """ 442 return self._avg(data2D, 'y') 443 444 445 class SlabX(_Slab): 446 """ 447 Compute average I(Qx) for a region of interest 448 """ 449 450 def __call__(self, data2D): 451 """ 452 Compute average I(Qx) for a region of interest 453 :param data2D: Data2D object 454 :return: Data1D object 455 """ 456 return self._avg(data2D, 'x') 457 458 ################################################################################ 459 460 class Boxsum(object): 461 """ 462 Perform the sum of counts in a 2D region of interest. 463 """ 464 465 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 466 # Minimum Qx value [A-1] 467 self.x_min = x_min 468 # Maximum Qx value [A-1] 469 self.x_max = x_max 470 # Minimum Qy value [A-1] 471 self.y_min = y_min 472 # Maximum Qy value [A-1] 473 self.y_max = y_max 474 475 def __call__(self, data2D): 476 """ 477 Perform the sum in the region of interest 478 479 :param data2D: Data2D object 480 :return: number of counts, error on number of counts, 481 number of points summed 482 """ 483 y, err_y, y_counts = self._sum(data2D) 484 485 # Average the sums 486 counts = 0 if y_counts == 0 else y 487 error = 0 if y_counts == 0 else math.sqrt(err_y) 488 489 # Added y_counts to return, SMK & PDB, 04/03/2013 490 return counts, error, y_counts 491 492 def _sum(self, data2D): 493 """ 494 Perform the sum in the region of interest 495 496 :param data2D: Data2D object 497 :return: number of counts, 498 error on number of counts, number of entries summed 499 """ 500 if len(data2D.detector) > 1: 501 msg = "Circular averaging: invalid number " 502 msg += "of detectors: %g" % len(data2D.detector) 503 raise RuntimeError(msg) 504 # Get data 505 data = data2D.data[np.isfinite(data2D.data)] 506 err_data = data2D.err_data[np.isfinite(data2D.data)] 507 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 508 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 509 510 y = 0.0 511 err_y = 0.0 512 y_counts = 0.0 513 514 # Average pixelsize in q space 515 for npts in range(len(data)): 516 # default frac 517 frac_x = 0 518 frac_y = 0 519 520 # get min and max at each points 521 qx = qx_data[npts] 522 qy = qy_data[npts] 523 524 # get the ROI 525 if self.x_min <= qx and self.x_max > qx: 526 frac_x = 1 527 if self.y_min <= qy and self.y_max > qy: 528 frac_y = 1 529 # Find the fraction along each directions 530 frac = frac_x * frac_y 531 if frac == 0: 532 continue 533 y += frac * data[npts] 534 if err_data is None or err_data[npts] == 0.0: 535 if data[npts] < 0: 536 data[npts] = -data[npts] 537 err_y += frac * frac * data[npts] 538 else: 539 err_y += frac * frac * err_data[npts] * err_data[npts] 540 y_counts += frac 541 return y, err_y, y_counts 542 543 544 class Boxavg(Boxsum): 545 """ 546 Perform the average of counts in a 2D region of interest. 547 """ 548 549 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 550 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, 551 y_min=y_min, y_max=y_max) 552 553 def __call__(self, data2D): 554 """ 555 Perform the sum in the region of interest 556 557 :param data2D: Data2D object 558 :return: average counts, error on average counts 559 560 """ 561 y, err_y, y_counts = self._sum(data2D) 562 563 # Average the sums 564 counts = 0 if y_counts == 0 else y / y_counts 565 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts 566 567 return counts, error 568 569 ################################################################################ 570 571 class CircularAverage(object): 572 """ 573 Perform circular averaging on 2D data 574 575 The data returned is the distribution of counts 576 as a function of Q 577 """ 578 579 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 580 # Minimum radius included in the average [A-1] 581 self.r_min = r_min 582 # Maximum radius included in the average [A-1] 583 self.r_max = r_max 584 # Bin width (step size) [A-1] 585 self.bin_width = bin_width 586 587 def __call__(self, data2D, ismask=False): 588 """ 589 Perform circular averaging on the data 590 591 :param data2D: Data2D object 592 :return: Data1D object 593 """ 594 # Get data W/ finite values 595 data = data2D.data[np.isfinite(data2D.data)] 596 q_data = data2D.q_data[np.isfinite(data2D.data)] 597 err_data = data2D.err_data[np.isfinite(data2D.data)] 598 mask_data = data2D.mask[np.isfinite(data2D.data)] 599 600 dq_data = None 601 if data2D.dqx_data is not None and data2D.dqy_data is not None: 602 dq_data = get_dq_data(data2D) 603 604 if len(q_data) == 0: 605 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 606 raise RuntimeError(msg) 607 608 # Build array of Q intervals 609 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 610 611 x = np.zeros(nbins) 612 y = np.zeros(nbins) 613 err_y = np.zeros(nbins) 614 err_x = np.zeros(nbins) 615 y_counts = np.zeros(nbins) 616 617 for npt in range(len(data)): 618 619 if ismask and not mask_data[npt]: 620 continue 621 622 frac = 0 623 624 # q-value at the pixel (j,i) 625 q_value = q_data[npt] 626 data_n = data[npt] 627 628 # No need to calculate the frac when all data are within range 629 if self.r_min >= self.r_max: 630 raise ValueError("Limit Error: min > max") 631 632 if self.r_min <= q_value and q_value <= self.r_max: 633 frac = 1 634 if frac == 0: 635 continue 636 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 637 638 # Take care of the edge case at phi = 2pi. 639 if i_q == nbins: 640 i_q = nbins - 1 641 y[i_q] += frac * data_n 642 # Take dqs from data to get the q_average 643 x[i_q] += frac * q_value 644 if err_data is None or err_data[npt] == 0.0: 645 if data_n < 0: 646 data_n = -data_n 647 err_y[i_q] += frac * frac * data_n 648 else: 649 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 650 if dq_data is not None: 651 # To be consistent with dq calculation in 1d reduction, 652 # we need just the averages (not quadratures) because 653 # it should not depend on the number of the q points 654 # in the qr bins. 655 err_x[i_q] += frac * dq_data[npt] 656 else: 657 err_x = None 658 y_counts[i_q] += frac 659 660 # Average the sums 661 for n in range(nbins): 662 if err_y[n] < 0: 663 err_y[n] = -err_y[n] 664 err_y[n] = math.sqrt(err_y[n]) 665 # if err_x is not None: 666 # err_x[n] = math.sqrt(err_x[n]) 667 668 err_y = err_y / y_counts 669 err_y[err_y == 0] = np.average(err_y) 670 y = y / y_counts 671 x = x / y_counts 672 idx = (np.isfinite(y)) & (np.isfinite(x)) 673 674 if err_x is not None: 675 d_x = err_x[idx] / y_counts[idx] 676 else: 677 d_x = None 678 679 if not idx.any(): 680 msg = "Average Error: No points inside ROI to average..." 681 raise ValueError(msg) 682 683 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 684 685 ################################################################################ 686 687 class Ring(object): 688 """ 689 Defines a ring on a 2D data set. 690 The ring is defined by r_min, r_max, and 691 the position of the center of the ring. 692 693 The data returned is the distribution of counts 694 around the ring as a function of phi. 695 696 Phi_min and phi_max should be defined between 0 and 2*pi 697 in anti-clockwise starting from the x- axis on the left-hand side 698 """ 699 # Todo: remove center. 700 701 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 702 # Minimum radius 703 self.r_min = r_min 704 # Maximum radius 705 self.r_max = r_max 706 # Center of the ring in x 707 self.center_x = center_x 708 # Center of the ring in y 709 self.center_y = center_y 710 # Number of angular bins 711 self.nbins_phi = nbins 712 713 def __call__(self, data2D): 714 """ 715 Apply the ring to the data set. 716 Returns the angular distribution for a given q range 717 718 :param data2D: Data2D object 719 720 :return: Data1D object 721 """ 722 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 723 raise RuntimeError("Ring averaging only take plottable_2D objects") 724 725 Pi = math.pi 726 727 # Get data 728 data = data2D.data[np.isfinite(data2D.data)] 729 q_data = data2D.q_data[np.isfinite(data2D.data)] 730 err_data = data2D.err_data[np.isfinite(data2D.data)] 731 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 732 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 733 734 # Set space for 1d outputs 735 phi_bins = np.zeros(self.nbins_phi) 736 phi_counts = np.zeros(self.nbins_phi) 737 phi_values = np.zeros(self.nbins_phi) 738 phi_err = np.zeros(self.nbins_phi) 739 740 # Shift to apply to calculated phi values in order 741 # to center first bin at zero 742 phi_shift = Pi / self.nbins_phi 743 744 for npt in range(len(data)): 745 frac = 0 746 # q-value at the point (npt) 747 q_value = q_data[npt] 748 data_n = data[npt] 749 750 # phi-value at the point (npt) 751 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 752 753 if self.r_min <= q_value and q_value <= self.r_max: 754 frac = 1 755 if frac == 0: 756 continue 757 # binning 758 i_phi = int(math.floor((self.nbins_phi) * 759 (phi_value + phi_shift) / (2 * Pi))) 760 761 # Take care of the edge case at phi = 2pi. 762 if i_phi >= self.nbins_phi: 763 i_phi = 0 764 phi_bins[i_phi] += frac * data[npt] 765 766 if err_data is None or err_data[npt] == 0.0: 767 if data_n < 0: 768 data_n = -data_n 769 phi_err[i_phi] += frac * frac * math.fabs(data_n) 770 else: 771 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 772 phi_counts[i_phi] += frac 773 774 for i in range(self.nbins_phi): 775 phi_bins[i] = phi_bins[i] / phi_counts[i] 776 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 777 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 778 779 idx = (np.isfinite(phi_bins)) 780 781 if not idx.any(): 782 msg = "Average Error: No points inside ROI to average..." 783 raise ValueError(msg) 784 # elif len(phi_bins[idx])!= self.nbins_phi: 785 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 786 #,"empty bin(s) due to tight binning..." 787 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 788 789 ################################################################################ 737 790 738 791 class _Sector(object): … … 748 801 starting from the x- axis on the left-hand side 749 802 """ 750 def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20): 803 804 def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20, base = None): 751 805 self.r_min = r_min 752 806 self.r_max = r_max … … 754 808 self.phi_max = phi_max 755 809 self.nbins = nbins 810 self.base = base 756 811 757 812 def _agv(self, data2D, run='phi'): … … 765 820 """ 766 821 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 767 raise RuntimeError, "Ring averaging only take plottable_2D objects" 768 Pi = math.pi 822 raise RuntimeError("Ring averaging only take plottable_2D objects") 769 823 770 824 # Get the all data & info 771 data = data2D.data[numpy.isfinite(data2D.data)] 772 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 773 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 774 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] 775 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] 825 data = data2D.data[np.isfinite(data2D.data)] 826 q_data = data2D.q_data[np.isfinite(data2D.data)] 827 err_data = data2D.err_data[np.isfinite(data2D.data)] 828 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 829 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 830 776 831 dq_data = None 777 778 # Get the dq for resolution averaging779 832 if data2D.dqx_data is not None and data2D.dqy_data is not None: 780 # The pinholes and det. pix contribution present 781 # in both direction of the 2D which must be subtracted when 782 # converting to 1D: dq_overlap should calculated ideally at 783 # q = 0. 784 # Extrapolate dqy(perp) at q = 0 785 z_max = max(data2D.q_data) 786 z_min = min(data2D.q_data) 787 x_max = data2D.dqx_data[data2D.q_data[z_max]] 788 x_min = data2D.dqx_data[data2D.q_data[z_min]] 789 y_max = data2D.dqy_data[data2D.q_data[z_max]] 790 y_min = data2D.dqy_data[data2D.q_data[z_min]] 791 # Find qdx at q = 0 792 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 793 # when extrapolation goes wrong 794 if dq_overlap_x > min(data2D.dqx_data): 795 dq_overlap_x = min(data2D.dqx_data) 796 dq_overlap_x *= dq_overlap_x 797 # Find qdx at q = 0 798 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 799 # when extrapolation goes wrong 800 if dq_overlap_y > min(data2D.dqy_data): 801 dq_overlap_y = min(data2D.dqy_data) 802 # get dq at q=0. 803 dq_overlap_y *= dq_overlap_y 804 805 dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 806 if dq_overlap < 0: 807 dq_overlap = y_min 808 dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] 809 dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap 810 # def; dqx_data = dq_r dqy_data = dq_phi 811 # Convert dq 2D to 1D here 812 dqx = dqx_data * dqx_data 813 dqy = dqy_data * dqy_data 814 dq_data = numpy.add(dqx, dqy) 815 dq_data = numpy.sqrt(dq_data) 816 817 #set space for 1d outputs 818 x = numpy.zeros(self.nbins) 819 y = numpy.zeros(self.nbins) 820 y_err = numpy.zeros(self.nbins) 821 x_err = numpy.zeros(self.nbins) 822 y_counts = numpy.zeros(self.nbins) 833 dq_data = get_dq_data(data2D) 834 835 # set space for 1d outputs 836 x = np.zeros(self.nbins) 837 y = np.zeros(self.nbins) 838 y_err = np.zeros(self.nbins) 839 x_err = np.zeros(self.nbins) 840 y_counts = np.zeros(self.nbins) # Cycle counts (for the mean) 823 841 824 842 # Get the min and max into the region: 0 <= phi < 2Pi … … 826 844 phi_max = flip_phi(self.phi_max) 827 845 846 # binning object 847 if run.lower() == 'phi': 848 binning = Binning(self.phi_min, self.phi_max, self.nbins, self.base) 849 else: 850 binning = Binning(self.r_min, self.r_max, self.nbins, self.base) 851 828 852 for n in range(len(data)): 829 frac = 0830 853 831 854 # q-value at the pixel (j,i) … … 837 860 838 861 # phi-value of the pixel (j,i) 839 phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi 840 841 ## No need to calculate the frac when all data are within range 842 if self.r_min <= q_value and q_value <= self.r_max: 843 frac = 1 844 if frac == 0: 862 phi_value = math.atan2(qy_data[n], qx_data[n]) + math.pi 863 864 # No need to calculate: data outside of the radius 865 if self.r_min > q_value or q_value > self.r_max: 845 866 continue 846 #In case of two ROIs (symmetric major and minor regions)(for 'q2') 867 868 # In case of two ROIs (symmetric major and minor regions)(for 'q2') 847 869 if run.lower() == 'q2': 848 # #For minor sector wing870 # For minor sector wing 849 871 # Calculate the minor wing phis 850 phi_min_minor = flip_phi(phi_min - Pi)851 phi_max_minor = flip_phi(phi_max - Pi)872 phi_min_minor = flip_phi(phi_min - math.pi) 873 phi_max_minor = flip_phi(phi_max - math.pi) 852 874 # Check if phis of the minor ring is within 0 to 2pi 853 875 if phi_min_minor > phi_max_minor: 854 is_in = (phi_value > phi_min_minor or \855 876 is_in = (phi_value > phi_min_minor or 877 phi_value < phi_max_minor) 856 878 else: 857 is_in = (phi_value > phi_min_minor and \858 859 860 # For all cases(i.e.,for 'q', 'q2', and 'phi')861 # Find pixels within ROI879 is_in = (phi_value > phi_min_minor and 880 phi_value < phi_max_minor) 881 882 # For all cases(i.e.,for 'q', 'q2', and 'phi') 883 # Find pixels within ROI 862 884 if phi_min > phi_max: 863 is_in = is_in or (phi_value > phi_min or \864 885 is_in = is_in or (phi_value > phi_min or 886 phi_value < phi_max) 865 887 else: 866 is_in = is_in or (phi_value >= phi_min and \ 867 phi_value < phi_max) 868 888 is_in = is_in or (phi_value >= phi_min and 889 phi_value < phi_max) 890 891 # data oustide of the phi range 869 892 if not is_in: 870 frac = 0871 if frac == 0:872 893 continue 873 # Check which type of averaging we need 894 895 # Get the binning index 874 896 if run.lower() == 'phi': 875 temp_x = (self.nbins) * (phi_value - self.phi_min) 876 temp_y = (self.phi_max - self.phi_min) 877 i_bin = int(math.floor(temp_x / temp_y)) 897 i_bin = binning.get_bin_index(phi_value) 878 898 else: 879 temp_x = (self.nbins) * (q_value - self.r_min) 880 temp_y = (self.r_max - self.r_min) 881 i_bin = int(math.floor(temp_x / temp_y)) 899 i_bin = binning.get_bin_index(q_value) 882 900 883 901 # Take care of the edge case at phi = 2pi. … … 885 903 i_bin = self.nbins - 1 886 904 887 # #Get the total y888 y[i_bin] += frac *data_n889 x[i_bin] += frac *q_value905 # Get the total y 906 y[i_bin] += data_n 907 x[i_bin] += q_value 890 908 if err_data[n] is None or err_data[n] == 0.0: 891 909 if data_n < 0: 892 910 data_n = -data_n 893 y_err[i_bin] += frac * frac *data_n911 y_err[i_bin] += data_n 894 912 else: 895 y_err[i_bin] += frac * frac * err_data[n] * err_data[n]913 y_err[i_bin] += err_data[n]**2 896 914 897 915 if dq_data is not None: … … 900 918 # it should not depend on the number of the q points 901 919 # in the qr bins. 902 x_err[i_bin] += frac *dq_data[n]920 x_err[i_bin] += dq_data[n] 903 921 else: 904 922 x_err = None 905 y_counts[i_bin] += frac923 y_counts[i_bin] += 1 906 924 907 925 # Organize the results … … 923 941 #x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2) 924 942 x[i] = x[i] / y_counts[i] 925 y_err[y_err == 0] = n umpy.average(y_err)926 idx = (n umpy.isfinite(y) & numpy.isfinite(y_err))943 y_err[y_err == 0] = np.average(y_err) 944 idx = (np.isfinite(y) & np.isfinite(y_err)) 927 945 if x_err is not None: 928 946 d_x = x_err[idx] / y_counts[idx] … … 931 949 if not idx.any(): 932 950 msg = "Average Error: No points inside sector of ROI to average..." 933 raise ValueError , msg934 # elif len(y[idx])!= self.nbins:951 raise ValueError(msg) 952 # elif len(y[idx])!= self.nbins: 935 953 # print "resulted",self.nbins- len(y[idx]), 936 954 #"empty bin(s) due to tight binning..." … … 946 964 The number of bin in phi also has to be defined. 947 965 """ 966 948 967 def __call__(self, data2D): 949 968 """ … … 965 984 The number of bin in Q also has to be defined. 966 985 """ 986 967 987 def __call__(self, data2D): 968 988 """ … … 975 995 return self._agv(data2D, 'q2') 976 996 997 ################################################################################ 977 998 978 999 class Ringcut(object): … … 987 1008 in anti-clockwise starting from the x- axis on the left-hand side 988 1009 """ 1010 989 1011 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0): 990 1012 # Minimum radius … … 1007 1029 """ 1008 1030 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1009 raise RuntimeError , "Ring cut only take plottable_2D objects"1031 raise RuntimeError("Ring cut only take plottable_2D objects") 1010 1032 1011 1033 # Get data 1012 1034 qx_data = data2D.qx_data 1013 1035 qy_data = data2D.qy_data 1014 q_data = n umpy.sqrt(qx_data * qx_data + qy_data * qy_data)1036 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 1015 1037 1016 1038 # check whether or not the data point is inside ROI … … 1018 1040 return out 1019 1041 1042 ################################################################################ 1020 1043 1021 1044 class Boxcut(object): … … 1023 1046 Find a rectangular 2D region of interest. 1024 1047 """ 1048 1025 1049 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 1026 1050 # Minimum Qx value [A-1] … … 1055 1079 """ 1056 1080 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1057 raise RuntimeError , "Boxcut take only plottable_2D objects"1081 raise RuntimeError("Boxcut take only plottable_2D objects") 1058 1082 # Get qx_ and qy_data 1059 1083 qx_data = data2D.qx_data … … 1066 1090 return outx & outy 1067 1091 1092 ################################################################################ 1068 1093 1069 1094 class Sectorcut(object): … … 1077 1102 and (phi_max-phi_min) should not be larger than pi 1078 1103 """ 1104 1079 1105 def __init__(self, phi_min=0, phi_max=math.pi): 1080 1106 self.phi_min = phi_min … … 1106 1132 """ 1107 1133 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1108 raise RuntimeError , "Sectorcut take only plottable_2D objects"1134 raise RuntimeError("Sectorcut take only plottable_2D objects") 1109 1135 Pi = math.pi 1110 1136 # Get data … … 1113 1139 1114 1140 # get phi from data 1115 phi_data = n umpy.arctan2(qy_data, qx_data)1141 phi_data = np.arctan2(qy_data, qx_data) 1116 1142 1117 1143 # Get the min and max into the region: -pi <= phi < Pi … … 1120 1146 # check for major sector 1121 1147 if phi_min_major > phi_max_major: 1122 out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) 1148 out_major = (phi_min_major <= phi_data) + \ 1149 (phi_max_major > phi_data) 1123 1150 else: 1124 out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) 1151 out_major = (phi_min_major <= phi_data) & ( 1152 phi_max_major > phi_data) 1125 1153 1126 1154 # minor sector … … 1132 1160 if phi_min_minor > phi_max_minor: 1133 1161 out_minor = (phi_min_minor <= phi_data) + \ 1134 1162 (phi_max_minor >= phi_data) 1135 1163 else: 1136 1164 out_minor = (phi_min_minor <= phi_data) & \ 1137 1165 (phi_max_minor >= phi_data) 1138 1166 out = out_major + out_minor 1139 1167
Note: See TracChangeset
for help on using the changeset viewer.