Ignore:
Timestamp:
May 5, 2014 9:21:47 AM (11 years ago)
Author:
pkienzle
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
644ca73
Parents:
6f87cc1 (diff), 0089be3 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

merge from trunk

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sans/models/media/model_functions.html

    r6771d94 r0089be3  
    88<li><a href="#Introduction"><b>Introduction</b></a></li> 
    99<li><a href="#Shapes"><b>Shapes</b></a>:  
    10         <ul> 
    11         <li>Sphere based:<br/> 
    12         <a href="#SphereModel">SphereModel (Magnetic 2D Model)</a>,  
    13         <a href="#BinaryHSModel">BinaryHSModel</a>,  
    14         <a href="#FuzzySphereModel">FuzzySphereModel</a>,  
    15         <a href="#RaspBerryModel">RaspBerryModel</a>,  
    16         <a href="#CoreShellModel">CoreShellModel (Magnetic 2D Model)</a>, 
    17         <a href="#Core2ndMomentModel">Core2ndMomentModel</a>,  
    18         <a href="#CoreMultiShellModel">CoreMultiShellModel (Magnetic 2D Model)</a>,  
    19         <a href="#VesicleModel">VesicleModel</a>,  
    20         <a href="#MultiShellModel">MultiShellModel</a>,  
    21         <a href="#OnionExpShellModel">OnionExpShellModel</a>,  
    22         <a href="#SphericalSLDModel">SphericalSLDModel</a>,  
    23         <a href="#LinearPearlsModel">LinearPearlsModel</a>,  
    24         <a href="#PearlNecklaceModel">PearlNecklaceModel</a> 
    25         </li> 
    26         <li>Cylinder based:<br/> 
    27         <a href="#CylinderModel">CylinderModel (Magnetic 2D Model)</a>,  
    28         <a href="#CoreShellCylinderModel">CoreShellCylinderModel</a>,  
    29         <a href="#CoreShellBicelleModel">CoreShellBicelleModel</a>, 
    30         <a href="#HollowCylinderModel">HollowCylinderModel</a>, 
    31         <a href="#FlexibleCylinderModel">FlexibleCylinderModel</a>, 
    32         <a href="#FlexibleCylinderModel">FlexCylEllipXModel</a>, 
    33         <a href="#StackedDisksModel">StackedDisksModel</a>, 
    34         <a href="#EllipticalCylinderModel">EllipticalCylinderModel</a>,  
    35         <a href="#BarBellModel">BarBellModel</a>,  
    36         <a href="#CappedCylinderModel">CappedCylinderModel</a>, 
    37         <a href="#PringleModel">PringleModel</a>  
    38         </li> 
    39         <li>Parallelpipeds:<br/> 
    40         <a href="#ParallelepipedModel">ParallelepipedModel (Magnetic 2D Model)</a>, 
    41         <a href="#CSParallelepipedModel">CSParallelepipedModel</a> 
    42         </li> 
    43         <li>Ellipsoids:<br/> 
    44         <a href="#EllipsoidModel">EllipsoidModel</a>,  
    45         <a href="#CoreShellEllipsoidModel">CoreShellEllipsoidModel</a>,  
    46         <a href="#TriaxialEllipsoidModel">TriaxialEllipsoidModel</a> 
    47         </li> 
    48         <li>Lamellar:<br/>  
    49         <a href="#LamellarModel">LamellarModel</a>,  
    50         <a href="#LamellarFFHGModel">LamellarFFHGModel</a>,  
    51         <a href="#LamellarPSModel">LamellarPSModel</a>,  
    52         <a href="#LamellarPSHGModel">LamellarPSHGModel</a> 
    53         </li> 
    54         <li>Paracrystals:<br/> 
    55         <a href="#LamellarPCrystalModel">LamellarPCrystalModel</a>,  
    56         <a href="#SCCrystalModel">SCCrystalModel</a>,  
    57         <a href="#FCCrystalModel">FCCrystalModel</a>,  
    58         <a href="#BCCrystalModel">BCCrystalModel</a> 
    59         </li> 
    60         </ul> 
     10    <ul> 
     11    <li>Sphere based:<br/> 
     12    <a href="#SphereModel">SphereModel (Magnetic 2D Model)</a>,  
     13    <a href="#BinaryHSModel">BinaryHSModel</a>,  
     14    <a href="#FuzzySphereModel">FuzzySphereModel</a>,  
     15    <a href="#RaspBerryModel">RaspBerryModel</a>,  
     16    <a href="#CoreShellModel">CoreShellModel (Magnetic 2D Model)</a>, 
     17    <a href="#Core2ndMomentModel">Core2ndMomentModel</a>,  
     18    <a href="#CoreMultiShellModel">CoreMultiShellModel (Magnetic 2D Model)</a>,  
     19    <a href="#VesicleModel">VesicleModel</a>,  
     20    <a href="#MultiShellModel">MultiShellModel</a>,  
     21    <a href="#OnionExpShellModel">OnionExpShellModel</a>,  
     22    <a href="#SphericalSLDModel">SphericalSLDModel</a>,  
     23    <a href="#LinearPearlsModel">LinearPearlsModel</a>,  
     24    <a href="#PearlNecklaceModel">PearlNecklaceModel</a> 
     25    </li> 
     26    <li>Cylinder based:<br/> 
     27    <a href="#CylinderModel">CylinderModel (Magnetic 2D Model)</a>,  
     28    <a href="#CoreShellCylinderModel">CoreShellCylinderModel</a>,  
     29    <a href="#CoreShellBicelleModel">CoreShellBicelleModel</a>, 
     30    <a href="#HollowCylinderModel">HollowCylinderModel</a>, 
     31    <a href="#FlexibleCylinderModel">FlexibleCylinderModel</a>, 
     32    <a href="#FlexibleCylinderModel">FlexCylEllipXModel</a>, 
     33    <a href="#StackedDisksModel">StackedDisksModel</a>, 
     34    <a href="#EllipticalCylinderModel">EllipticalCylinderModel</a>,  
     35    <a href="#BarBellModel">BarBellModel</a>,  
     36    <a href="#CappedCylinderModel">CappedCylinderModel</a>, 
     37    <a href="#PringleModel">PringleModel</a>  
     38    </li> 
     39    <li>Parallelpipeds:<br/> 
     40    <a href="#ParallelepipedModel">ParallelepipedModel (Magnetic 2D Model)</a>, 
     41    <a href="#CSParallelepipedModel">CSParallelepipedModel</a>, 
     42    <a href="#RectangularHollowPrismInfThinWallsModel">RectangularHollowPrismInfThinWallsModel</a>, 
     43    <a href="#RectangularPrismModel">RectangularPrismModel</a>, 
     44    <a href="#RectangularHollowPrismModel">RectangularHollowPrismModel</a> 
     45    </li> 
     46    <li>Ellipsoids:<br/> 
     47    <a href="#EllipsoidModel">EllipsoidModel</a>,  
     48    <a href="#CoreShellEllipsoidModel">CoreShellEllipsoidModel</a>,  
     49    <a href="#CoreShellEllipsoidXTModel">CoreShellEllipsoidXTModel</a>,  
     50    <a href="#TriaxialEllipsoidModel">TriaxialEllipsoidModel</a> 
     51    </li> 
     52    <li>Lamellar:<br/>  
     53    <a href="#LamellarModel">LamellarModel</a>,  
     54    <a href="#LamellarFFHGModel">LamellarFFHGModel</a>,  
     55    <a href="#LamellarPSModel">LamellarPSModel</a>,  
     56    <a href="#LamellarPSHGModel">LamellarPSHGModel</a> 
     57    </li> 
     58    <li>Paracrystals:<br/> 
     59    <a href="#LamellarPCrystalModel">LamellarPCrystalModel</a>,  
     60    <a href="#SCCrystalModel">SCCrystalModel</a>,  
     61    <a href="#FCCrystalModel">FCCrystalModel</a>,  
     62    <a href="#BCCrystalModel">BCCrystalModel</a> 
     63    </li> 
     64    </ul> 
    6165<li><a href="#Shape-Independent"><b>Shape-Independent</b></a>:  
    62         <a href="#Absolute%20Power_Law">AbsolutePower_Law</a>,  
    63         <a href="#BEPolyelectrolyte">BEPolyelectrolyte</a>,  
    64         <a href="#BroadPeakModel">BroadPeakModel</a>, 
    65         <a href="#CorrLength">CorrLength</a>,  
    66         <a href="#DABModel">DABModel</a>,  
    67         <a href="#Debye">Debye</a>,  
    68         <a href="#Number_Density_Fractal">FractalModel</a>,  
    69         <a href="#FractalCoreShell">FractalCoreShell</a>,  
    70         <a href="#GaussLorentzGel">GaussLorentzGel</a>,  
    71         <a href="#Guinier">Guinier</a>,  
    72         <a href="#GuinierPorod">GuinierPorod</a>,  
    73         <a href="#Lorentz">Lorentz</a>,  
    74         <a href="#Mass_Fractal">MassFractalModel</a>,  
    75         <a href="#MassSurface_Fractal">MassSurfaceFractal</a>,  
    76         <a href="#Peak%20Gauss%20Model">PeakGaussModel</a>,  
    77         <a href="#Peak%20Lorentz%20Model">PeakLorentzModel</a>,  
    78         <a href="#Poly_GaussCoil">Poly_GaussCoil</a>,  
    79         <a href="#PolymerExclVolume">PolyExclVolume</a>,  
    80         <a href="#PorodModel">PorodModel</a>,  
    81         <a href="#RPA10Model">RPA10Model</a>,  
    82         <a href="#StarPolymer">StarPolymer</a>,  
    83         <a href="#Surface_Fractal">SurfaceFractalModel</a>,  
    84         <a href="#TeubnerStreyModel">Teubner Strey</a>,  
    85         <a href="#TwoLorentzian">TwoLorentzian</a>,  
    86         <a href="#TwoPowerLaw">TwoPowerLaw</a>,  
    87         <a href="#UnifiedPowerRg">UnifiedPowerRg</a>,  
    88         <a href="#LineModel">LineModel</a>,  
    89         <a href="#ReflectivityModel">ReflectivityModel</a>,  
    90         <a href="#ReflectivityIIModel">ReflectivityIIModel</a>,  
    91         <a href="#GelFitModel">GelFitModel</a>.</li> 
    92          
     66    <a href="#Absolute%20Power_Law">AbsolutePower_Law</a>,  
     67    <a href="#BEPolyelectrolyte">BEPolyelectrolyte</a>,  
     68    <a href="#BroadPeakModel">BroadPeakModel</a>, 
     69    <a href="#CorrLength">CorrLength</a>,  
     70    <a href="#DABModel">DABModel</a>,  
     71    <a href="#Debye">Debye</a>,  
     72    <a href="#Number_Density_Fractal">FractalModel</a>,  
     73    <a href="#FractalCoreShell">FractalCoreShell</a>,  
     74    <a href="#GaussLorentzGel">GaussLorentzGel</a>,  
     75    <a href="#Guinier">Guinier</a>,  
     76    <a href="#GuinierPorod">GuinierPorod</a>,  
     77    <a href="#Lorentz">Lorentz</a>,  
     78    <a href="#Mass_Fractal">MassFractalModel</a>,  
     79    <a href="#MassSurface_Fractal">MassSurfaceFractal</a>,  
     80    <a href="#Peak%20Gauss%20Model">PeakGaussModel</a>,  
     81    <a href="#Peak%20Lorentz%20Model">PeakLorentzModel</a>,  
     82    <a href="#Poly_GaussCoil">Poly_GaussCoil</a>,  
     83    <a href="#PolymerExclVolume">PolyExclVolume</a>,  
     84    <a href="#PorodModel">PorodModel</a>,  
     85    <a href="#RPA10Model">RPA10Model</a>,  
     86    <a href="#StarPolymer">StarPolymer</a>,  
     87    <a href="#Surface_Fractal">SurfaceFractalModel</a>,  
     88    <a href="#TeubnerStreyModel">Teubner Strey</a>,  
     89    <a href="#TwoLorentzian">TwoLorentzian</a>,  
     90    <a href="#TwoPowerLaw">TwoPowerLaw</a>,  
     91    <a href="#UnifiedPowerRg">UnifiedPowerRg</a>,  
     92    <a href="#LineModel">LineModel</a>,  
     93    <a href="#ReflectivityModel">ReflectivityModel</a>,  
     94    <a href="#ReflectivityIIModel">ReflectivityIIModel</a>,  
     95    <a href="#GelFitModel">GelFitModel</a>.</li> 
     96     
    9397<li><a href="#Model"><b>Customized Models</b></a>:  
    94         <a href="#testmodel">testmodel</a>,  
    95         <a href="#testmodel_2">testmodel_2</a>,  
    96         <a href="#sum_p1_p2">sum_p1_p2</a>,  
    97         <a href="#sum_Ap1_1_Ap2">sum_Ap1_1_Ap2</a>,  
    98         <a href="#polynomial5">polynomial5</a>,  
    99         <a href="#sph_bessel_jn">sph_bessel_jn</a>.</li> 
    100          
     98    <a href="#testmodel">testmodel</a>,  
     99    <a href="#testmodel_2">testmodel_2</a>,  
     100    <a href="#sum_p1_p2">sum_p1_p2</a>,  
     101    <a href="#sum_Ap1_1_Ap2">sum_Ap1_1_Ap2</a>,  
     102    <a href="#polynomial5">polynomial5</a>,  
     103    <a href="#sph_bessel_jn">sph_bessel_jn</a>.</li> 
     104     
    101105<li><a href="#Structure_Factors"><b>Structure Factors</b></a>:  
    102         <a href="#HardsphereStructure">HardSphereStructure</a>,  
    103         <a href="#SquareWellStructure">SquareWellStructure</a>,  
    104         <a href="#HayterMSAStructure">HayterMSAStructure</a>,  
    105         <a href="#StickyHSStructure">StickyHSStructure</a>.</li> 
    106          
     106    <a href="#HardsphereStructure">HardSphereStructure</a>,  
     107    <a href="#SquareWellStructure">SquareWellStructure</a>,  
     108    <a href="#HayterMSAStructure">HayterMSAStructure</a>,  
     109    <a href="#StickyHSStructure">StickyHSStructure</a>.</li> 
     110     
    107111<li><a href="#References"><b>References</b></a></li> 
    108112</ul> 
     
    35753579 
    35763580 
    3577  
    3578 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.27.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="EllipsoidModel"></a><b><span style="font-size: 14pt;">Ellipsoid Model</span></b></p> 
     3581<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.27.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><b><span style="font-size: 14pt;"><a name="RectangularHollowPrismInfThinWallsModel"></a>RectangularHollowPrismInfThinWallsModel</span></b></p> 
     3582 
     3583<p>This model provides the form factor, P( <em>q</em>), for a hollow rectangular prism 
     3584with infinitely thin walls.</p> 
     3585<p><em>Definition</em></p> 
     3586<p>The 1D scattering intensity for this model is calculated according to the equations given by 
     3587Nayuk and Huber (Nayuk, 2012).</p> 
     3588<p>Assuming a hollow parallelepiped with infinitely thin walls, edge lengths A &le; B &le; C 
     3589        <span class="formula"><i>A</i>†
     3590≀†
     3591<i>B</i>†
     3592≀†
     3593<i>C</i></span> 
     3594 
     3595and presenting an orientation with respect to the scattering vector given by &theta; and &phi;, 
     3596where &theta; is the angle between the <em>z</em> axis and the longest axis of the parallelepiped <em>C</em>, and &phi; 
     3597is the angle between the scattering vector (lying in the <em>xy</em> plane) and the <em>y</em> axis, 
     3598the form factor is given by:</p> 
     3599 
     3600<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_1.png" alt="" /></span></p> 
     3601 
     3602<p>where</p> 
     3603 
     3604<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_2.png" alt="" /></span></p> 
     3605 
     3606<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_3.png" alt="" /></span></p> 
     3607 
     3608<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_4.png" alt="" /></span></p> 
     3609 
     3610<p>and</p> 
     3611 
     3612<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_5.png" alt="" /></span></p> 
     3613 
     3614<p>The 1D scattering intensity is calculated as:</p> 
     3615 
     3616<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrismInfThinWalls_6.png" alt="" /></span></p> 
     3617 
     3618<p>where <em>V</em> is the volume of the rectangular prism, <span class="formula"><i>&rho;</i><sub><span class="mbox">pipe</span></sub></span> 
     3619 is the scattering length of the 
     3620parallelepiped, <span class="formula"><i>&rho;</i><sub><span class="mbox">solvent</span></sub></span> 
     3621 is the scattering length of the solvent, and 
     3622(if the data are in absolute scale) scale represents the volume fraction (which is unitless) .</p> 
     3623<p>The 2D scattering intensity is not computed by this model.</p> 
     3624<p>The returned value is scaled to units of cm<sup>-1</sup> and the parameters of the RectangularHollowPrismInfThinWallModel 
     3625are the following:</p> 
     3626<table border="1" class="docutils"> 
     3627<colgroup> 
     3628<col width="40%" /> 
     3629<col width="23%" /> 
     3630<col width="37%" /> 
     3631</colgroup> 
     3632<thead valign="bottom"> 
     3633<tr><th class="head">Parameter name</th> 
     3634<th class="head">Units</th> 
     3635<th class="head">Default value</th> 
     3636</tr> 
     3637</thead> 
     3638<tbody valign="top"> 
     3639<tr><td>scale</td> 
     3640<td>None</td> 
     3641<td>1</td> 
     3642</tr> 
     3643<tr><td>short_side</td> 
     3644<td>&Aring;</td> 
     3645<td>35</td> 
     3646</tr> 
     3647<tr><td>b2a_ratio</td> 
     3648<td>None</td> 
     3649<td>1</td> 
     3650</tr> 
     3651<tr><td>c2a_ratio</td> 
     3652<td>None</td> 
     3653<td>1</td> 
     3654</tr> 
     3655<tr><td>sldPipe</td> 
     3656<td>&Aring;<sup>-2</sup></td> 
     3657<td>6.3e-6</td> 
     3658</tr> 
     3659<tr><td>sldSolv</td> 
     3660<td>&Aring;<sup>-2</sup></td> 
     3661<td>1.0e-6</td> 
     3662</tr> 
     3663<tr><td>background</td> 
     3664<td>cm<sup>-1</sup></td> 
     3665<td>0</td> 
     3666</tr> 
     3667</tbody> 
     3668</table> 
     3669<p>REFERENCES</p> 
     3670<ol class="upperalpha simple" start="18"> 
     3671<li>Nayuk and K. Huber, <em>Z. Phys. Chem.</em> 226 (2012) 837-854.</li> 
     3672</ol> 
     3673<p><em>Validation of the RectangularHollowPrismInfThinWallsModel</em></p> 
     3674<p>Validation of the code was done qualitatively by comparing the output of the 1D model to the curves 
     3675shown in (Nayuk, 2012).</p> 
     3676 
     3677 
     3678 
     3679 
     3680 
     3681 
     3682 
     3683 
     3684 
     3685 
     3686 
     3687 
     3688<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.28.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><b><span style="font-size: 14pt;"><a name="RectangularPrismModel"></a>RectangularPrismModel</span></b></p> 
     3689<p>This model provides the form factor, P( <em>q</em>), for a rectangular prism.</p> 
     3690<p>Note that this model is almost totally equivalent to the existing 
     3691ParallelepipedModel. The only difference is that the way the 
     3692relevant parameters are defined here (<em>a</em>, <em>b/a</em>, <em>c/a</em> instead of <em>a</em>, <em>b</em>, <em>c</em>) 
     3693allows to use polydispersity with this model while keeping the shape 
     3694of the prism (e.g. setting <em>b/a</em> = 1 and <em>c/a</em> = 1 and applying polydispersity 
     3695to <em>a</em> will generate a distribution of cubes of different sizes).</p> 
     3696<p><em>Definition</em></p> 
     3697<p>The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), 
     3698but the implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012).</p> 
     3699<p>The scattering from a massive parallelepiped with an orientation with respect to the scattering vector 
     3700given by &theta; and &phi; is given by:</p> 
     3701 
     3702<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularPrism_1.png" alt="" /></span></p> 
     3703 
     3704<p>where <em>A</em>, <em>B</em> and <em>C</em> are the sides of the parallelepiped and must fulfill <span class="formula"><i>A</i>†
     3705&le;†
     3706<i>B</i>†
     3707&le;†
     3708<i>C</i></span> 
     3709, 
     3710&theta; is the angle between the <em>z</em> axis and the longest axis of the parallelepiped <em>C</em>, and &phi; 
     3711is the angle between the scattering vector (lying in the <em>xy</em> plane) and the <em>y</em> axis.</p> 
     3712<p>The normalized form factor in 1D is obtained averaging over all possible orientations:</p> 
     3713 
     3714<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularPrism_2.png" alt="" /></span></p> 
     3715 
     3716<p>The 1D scattering intensity is calculated as:</p> 
     3717 
     3718<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularPrism_3.png" alt="" /></span></p> 
     3719 
     3720<p>where <em>V</em> is the volume of the rectangular prism, <span class="formula"><i>&rho;</i><sub><span class="mbox">pipe</span></sub></span> 
     3721 is the scattering length of the 
     3722parallelepiped, <span class="formula"><i>&rho;</i><sub><span class="mbox">solvent</span></sub></span> 
     3723 is the scattering length of the solvent, and 
     3724(if the data are in absolute scale) scale represents the volume fraction (which is unitless) .</p> 
     3725<p>The 2D scattering intensity is not computed by this model.</p> 
     3726<p>The returned value is scaled to units of cm<sup>-1</sup> and the parameters of the RectangularPrismModel are the following:</p> 
     3727<table border="1" class="docutils"> 
     3728<colgroup> 
     3729<col width="40%" /> 
     3730<col width="23%" /> 
     3731<col width="37%" /> 
     3732</colgroup> 
     3733<thead valign="bottom"> 
     3734<tr><th class="head">Parameter name</th> 
     3735<th class="head">Units</th> 
     3736<th class="head">Default value</th> 
     3737</tr> 
     3738</thead> 
     3739<tbody valign="top"> 
     3740<tr><td>scale</td> 
     3741<td>None</td> 
     3742<td>1</td> 
     3743</tr> 
     3744<tr><td>short_side</td> 
     3745<td>&Aring;</td> 
     3746<td>35</td> 
     3747</tr> 
     3748<tr><td>b2a_ratio</td> 
     3749<td>None</td> 
     3750<td>1</td> 
     3751</tr> 
     3752<tr><td>c2a_ratio</td> 
     3753<td>None</td> 
     3754<td>1</td> 
     3755</tr> 
     3756<tr><td>sldPipe</td> 
     3757<td>&Aring;<sup>-2</sup></td> 
     3758<td>6.3e-6</td> 
     3759</tr> 
     3760<tr><td>sldSolv</td> 
     3761<td>&Aring;<sup>-2</sup></td> 
     3762<td>1.0e-6</td> 
     3763</tr> 
     3764<tr><td>background</td> 
     3765<td>cm<sup>-1</sup></td> 
     3766<td>0</td> 
     3767</tr> 
     3768</tbody> 
     3769</table> 
     3770<p>REFERENCES</p> 
     3771<ol class="upperalpha simple" start="16"> 
     3772<li>Mittelbach and G. Porod, <em>Acta Physica Austriaca</em> 14 (1961) 185-211.</li> 
     3773</ol> 
     3774<ol class="upperalpha simple" start="18"> 
     3775<li>Nayuk and K. Huber, <em>Z. Phys. Chem.</em> 226 (2012) 837-854.</li> 
     3776</ol> 
     3777<p><em>Validation of the RectangularPrismModel</em></p> 
     3778<p>Validation of the code was done by comparing the output of the 1D model to the output of the existing 
     3779parallelepiped model.</p> 
     3780 
     3781 
     3782 
     3783 
     3784 
     3785 
     3786 
     3787 
     3788 
     3789 
     3790<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.29.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><b><span style="font-size: 14pt;"><a name="RectangularHollowPrismModel"></a>RectangularHollowPrismModel</span></b></p> 
     3791<p>This model provides the form factor, P( <em>q</em>), for a hollow rectangular parallelepiped 
     3792with a wall thickness Δ.</p> 
     3793<p><em>Definition</em></p> 
     3794<p>The 1D scattering intensity for this model is calculated by forming the difference of the 
     3795amplitudes of two massive parallelepipeds differing in their outermost dimensions in 
     3796each direction by the same length increment 2 &Delta; (Nayuk, 2012).</p> 
     3797<p>As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular 
     3798orientation of the parallelepiped with respect to the scattering vector and then averaged over all 
     3799possible orientations, giving:</p> 
     3800 
     3801<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrism_1.png" alt="" /></span></p> 
     3802 
     3803<p>where &theta; is the angle between the <em>z</em> axis and the longest axis of the parallelepiped, &phi; 
     3804is the angle between the scattering vector (lying in the <em>xy</em> plane) and the <em>y</em> axis, and:</p> 
     3805 
     3806<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrism_2.png" alt="" /></span></p> 
     3807 
     3808<p>where <em>A</em>, <em>B</em> and <em>C</em> are the external sides of the parallelepiped fulfilling <span class="formula"><i>A</i>†
     3809&le;†
     3810<i>B</i>†
     3811&le;†
     3812<i>C</i></span> 
     3813, 
     3814and the volume <em>V</em> of the parallelepiped is:</p> 
     3815 
     3816<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrism_3.png" alt="" /></span></p> 
     3817 
     3818<p>The 1D scattering intensity is calculated as:</p> 
     3819 
     3820<p style="text-align: center;" align="center"><span style="position: relative; top: 6pt;"><img src="img/RectangularHollowPrism_4.png" alt="" /></span></p> 
     3821 
     3822<p>where <span class="formula"><i>&rho;</i><sub><span class="mbox">pipe</span></sub></span> 
     3823 is the scattering length of the 
     3824parallelepiped, <span class="formula"><i>&rho;</i><sub><span class="mbox">solvent</span></sub></span> 
     3825 is the scattering length of the solvent, and 
     3826(if the data are in absolute scale) scale represents the volume fraction (which is unitless) .</p> 
     3827<p>The 2D scattering intensity is not computed by this model.</p> 
     3828<p>The returned value is scaled to units of cm<sup>-1</sup> and the parameters of the RectangularHollowPrismModel 
     3829are the following:</p> 
     3830<table border="1" class="docutils"> 
     3831<colgroup> 
     3832<col width="40%" /> 
     3833<col width="23%" /> 
     3834<col width="37%" /> 
     3835</colgroup> 
     3836<thead valign="bottom"> 
     3837<tr><th class="head">Parameter name</th> 
     3838<th class="head">Units</th> 
     3839<th class="head">Default value</th> 
     3840</tr> 
     3841</thead> 
     3842<tbody valign="top"> 
     3843<tr><td>scale</td> 
     3844<td>None</td> 
     3845<td>1</td> 
     3846</tr> 
     3847<tr><td>short_side</td> 
     3848<td>&Aring;</td> 
     3849<td>35</td> 
     3850</tr> 
     3851<tr><td>b2a_ratio</td> 
     3852<td>None</td> 
     3853<td>1</td> 
     3854</tr> 
     3855<tr><td>c2a_ratio</td> 
     3856<td>None</td> 
     3857<td>1</td> 
     3858</tr> 
     3859<tr><td>thickness</td> 
     3860<td>&Aring;</td> 
     3861<td>1</td> 
     3862</tr> 
     3863<tr><td>sldPipe</td> 
     3864<td>&Aring;<sup>-2</sup></td> 
     3865<td>6.3e-6</td> 
     3866</tr> 
     3867<tr><td>sldSolv</td> 
     3868<td>&Aring;<sup>-2</sup></td> 
     3869<td>1.0e-6</td> 
     3870</tr> 
     3871<tr><td>background</td> 
     3872<td>cm<sup>-1</sup></td> 
     3873<td>0</td> 
     3874</tr> 
     3875</tbody> 
     3876</table> 
     3877<p>REFERENCES</p> 
     3878<ol class="upperalpha simple" start="18"> 
     3879<li>Nayuk and K. Huber, <em>Z. Phys. Chem.</em> 226 (2012) 837-854.</li> 
     3880</ol> 
     3881<p><em>Validation of the RectangularHollowPrismModel</em></p> 
     3882<p>Validation of the code was done qualitatively by comparing the output of the 1D model to the curves 
     3883shown in (Nayuk, 2012).</p> 
     3884 
     3885 
     3886 
     3887 
     3888 
     3889 
     3890 
     3891 
     3892 
     3893 
     3894 
     3895 
     3896 
     3897 
     3898 
     3899 
     3900 
     3901 
     3902<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.30.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="EllipsoidModel"></a><b><span style="font-size: 14pt;">Ellipsoid Model</span></b></p> 
    35793903<p>This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density. The form factor is normalized by the particle volume.</p> 
    35803904<p style="margin-left: 0.85in; text-indent: -0.35in;"><b>1.1.</b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp; </span>Definition</b></p> 
     
    37104034<p><a name="_Ref173223004"></a>Figure 6: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the intensity from the NIST SANS analysis software. The parameters used were: Scale=1.0, Radius_a=20 &Aring;, Radius_b=400 &Aring;, Contrast=3e-6 &Aring; -2, and Background=0.0 cm -1.</p> 
    37114035<p>&nbsp;</p> 
    3712 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.28.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="CoreShellEllipsoidModel"></a><b><span style="font-size: 14pt;">CoreShellEllipsoidModel </span></b></p> 
     4036<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.31.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="CoreShellEllipsoidModel"></a><b><span style="font-size: 14pt;">CoreShellEllipsoidModel </span></b></p> 
    37134037<p>This model provides the form factor, P(<em>q</em>), for a core shell ellipsoid (below) where the form factor is normalized by the volume of the cylinder. P(q) = scale*&lt;f^2&gt;/V+background where the volume V= 4pi/3*rmaj*rmin2 and the averaging &lt; &gt;&nbsp; is applied over all orientation for 1D. &nbsp;</p> 
    37144038<p style="text-align: center;" align="center">&nbsp;&nbsp;<img id="Picture 41" src="img/image125.gif" alt="" width="335" height="179" /></p> 
     
    38494173 
    38504174 
    3851 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.29.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="TriaxialEllipsoidModel"></a><b><span style="font-size: 14pt;">TriaxialEllipsoidModel</span></b></p> 
     4175 
     4176 
     4177 
     4178 
     4179 
     4180 
     4181<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.32.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="CoreShellEllipsoidXTModel"></a><b><span style="font-size: 14pt;">CoreShellEllipsoidXTModel </span></b></p> 
     4182 
     4183<p>An alternative version of P( *q*) for the core plus shell ellipsoid (see  
     4184CoreShellEllipsoidModel), having as  
     4185parameters the core axial ratio X and a shell thickness, which are more often  
     4186what we would like to determine and behave better when polydispersity is  
     4187applied than the four independent radii in the original model.</p> 
     4188 
     4189<p>The geometric parameters are: equat_core = equatorial core radius = Rminor_core,  
     4190X_core = polar_core/equat_core = Rmajor_core/Rminor_core 
     4191T_shell = equat_outer - equat_core = Rminor_outer - Rminor_core, 
     4192XpolarShell = Tpolar_shell/T_shell = (Rmajor_outer - Rmajor_core)/(Rminor_outer - Rminor_core)</p> 
     4193 
     4194<p>In terms of the original radii: 
     4195polar_core = equat_core * X_core,  equat_shell = equat_core + T_shell 
     4196polar_shell = equat_core * X_core  + T_shell*XpolarShell 
     4197(where we note that "shell" perhaps confusingly, relates to the outer radius).</p> 
     4198 
     4199<p>When X_core &lt; 1 the core is oblate, when X_core &gt; 1  it is prolate,  
     4200X_core =1 is a spherical core. For a fixed shell thickness XpolarShell = 1, to scale the  
     4201shell thickness pro-rata with the radius XpolarShell = X_core.</p> 
     4202 
     4203<p>When including and S(Q), the radius in S(Q) is calculated to be that of a 
     4204 sphere with the same 2nd virial coefficient of the outr surface of the ellipsoid.  
     4205 This may have some undesirable effects if the aspect ratio of the ellipsoid is  
     4206 large ( X&lt;&lt;1 or X&gt;&gt;1), when the S(Q) which assumes spheres wil not in any case be valid.</p> 
     4207  
     4208<p>If SANS data are in absolute units, and sld's are correct, then "scale" should be the total  
     4209volume fraction of the "outer particle". When S(Q) is introduced this moves to the S(Q)  
     4210volume fraction, and "scale" should then be 1.0, or contain some ther units conversion factor  
     4211if you have say Xray data.</p> 
     4212 
     4213 
     4214<div align="center"> 
     4215<table style="border-collapse: collapse;" border="2" cellspacing="0" cellpadding="0"> 
     4216<tbody> 
     4217<tr style="height: 18.8pt;"> 
     4218<td style="border: 1pt solid width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4219<p>Parameter name</p> 
     4220</td> 
     4221<td style="border-width: 1pt 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4222<p>Units</p> 
     4223</td> 
     4224<td style="border-width: 1pt 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4225<p>Default value</p> 
     4226</td> 
     4227</tr> 
     4228<tr style="height: 18.8pt;"> 
     4229<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4230<p>background</p> 
     4231</td> 
     4232<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4233<p>cm-1</p> 
     4234</td> 
     4235<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4236<p>0.001</p> 
     4237</td> 
     4238</tr> 
     4239<tr style="height: 18.8pt;"> 
     4240<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4241<p>equat_core</p> 
     4242</td> 
     4243<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4244<p>&Aring;</p> 
     4245</td> 
     4246<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4247<p>20</p> 
     4248</td> 
     4249</tr> 
     4250<tr style="height: 18.8pt;"> 
     4251<td style="border-width: medium 1pt 1pt; vertical-align: top; width: 107pt; height: 18.8pt;"> 
     4252<p>scale</p> 
     4253</td> 
     4254<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4255<p></p> 
     4256</td> 
     4257<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4258<p>0.05</p> 
     4259</td> 
     4260</tr> 
     4261<tr style="height: 18.8pt;"> 
     4262<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4263<p>sld_core</p> 
     4264</td> 
     4265<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4266<p>&Aring; -2</p> 
     4267</td> 
     4268<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4269<p>2.0e-6</p> 
     4270</td> 
     4271</tr> 
     4272<tr style="height: 18.8pt;"> 
     4273<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4274<p>sld_shell</p> 
     4275</td> 
     4276<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4277<p>&Aring; -2</p> 
     4278</td> 
     4279<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4280<p>1.0e-6</p> 
     4281</td> 
     4282</tr> 
     4283<tr style="height: 18.8pt;"> 
     4284<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4285<p>sld_solv</p> 
     4286</td> 
     4287<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4288<p>&Aring; -2</p> 
     4289</td> 
     4290<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4291<p>6.3e-6</p> 
     4292</td> 
     4293</tr> 
     4294<tr style="height: 18.8pt;"> 
     4295<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4296<p>T_shell</p> 
     4297</td> 
     4298<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4299<p>&Aring;</p> 
     4300</td> 
     4301<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4302<p>30</p> 
     4303</td> 
     4304</tr> 
     4305<tr style="height: 18.8pt;"> 
     4306<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4307<p>X_core</p> 
     4308</td> 
     4309<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4310<p></p> 
     4311</td> 
     4312<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4313<p>3.0</p> 
     4314</td> 
     4315</tr> 
     4316<tr style="height: 18.8pt;"> 
     4317<td style="border-width: medium 1pt 1pt; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4318<p>XpolarShell</p> 
     4319</td> 
     4320<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"></td> 
     4321<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 18.8pt;" valign="top" width="143"> 
     4322<p>1.0</p> 
     4323</td> 
     4324</tr> 
     4325</tbody> 
     4326</table> 
     4327</div> 
     4328 
     4329 
     4330 
     4331 
     4332 
     4333 
     4334 
     4335 
     4336 
     4337<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.33.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="TriaxialEllipsoidModel"></a><b><span style="font-size: 14pt;">TriaxialEllipsoidModel</span></b></p> 
    38524338<p>This model provides the form factor, P(<em>q</em>), for an ellipsoid (below) where all three axes are of different lengths, i.e.,&nbsp; Ra =&lt; Rb =&lt; Rc (Note that users should maintains this inequality for the all calculations).&nbsp; P(q) = scale*&lt;f^2&gt;/V+background where the volume V= 4pi/3*Ra*Rb*Rc, and the averaging &lt; &gt;&nbsp; is applied over all orientation for 1D. &nbsp;</p> 
    38534339<p style="text-align: center;" align="center">&nbsp;&nbsp;<img id="Picture 42" src="img/image128.jpg" alt="" width="376" height="226" /></p> 
     
    39704456 
    39714457 
    3972 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.30.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarModel"></a><b><span style="font-size: 14pt;">LamellarModel</span></b></p> 
     4458<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.34.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarModel"></a><b><span style="font-size: 14pt;">LamellarModel</span></b></p> 
    39734459<p>This model provides the scattering intensity, I(<em>q</em>), for a lyotropic lamellar phase where a uniform SLD and random distribution in solution are assumed. &nbsp;The ploydispersion in the bilayer thickness can be applied from the GUI.</p> 
    39744460<p>The scattering intensity I(q) is:</p> 
     
    40574543<p>Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.</p> 
    40584544<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 
    4059 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.31.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarFFHGModel"></a><b><span style="font-size: 14pt;">LamellarFFHGModel</span></b></p> 
    4060 <p>This model provides the scattering intensity, I(<em>q</em>), for a lyotropic lamellar phase where a random distribution in solution are assumed. &nbsp;The SLD of the head region is taken to be different from the SLD of the tail region.</p> 
    4061 <p>The scattering intensity I(q) is:</p> 
     4545<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.35.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarFFHGModel"></a><b><span style="font-size: 14pt;">LamellarFFHGModel</span></b></p> 
     4546<p>This model calculates the form factor from a lyotropic lamellar phase. The intensity calculated is for lamellae of two-layer scattering length density that are randomly distributed in solution (a powder average). The scattering length density of the tail region, headgroup region, and solvent are taken to be different. 
     4547No inter-lamellar structure factor is calculated. Other models are available where S(q) is calculated.</p> 
     4548<p>The returned value is scale*I(q) + background, and is in units of [cm<sup>-1</sup>]:</p> 
    40624549<p style="text-align: center;" align="center"><span style="position: relative; top: 15pt;"><img src="img/image136.PNG" alt="" /></span></p> 
    4063 <p>The form factor is,</p> 
     4550<p>where the form factor is given by:</p> 
    40644551<p style="text-align: center;" align="center"><img src="img/image137.jpg" alt="" width="432" height="46" /></p> 
    4065 <p>where <span style="font-family: Symbol;">dT</span> = tail length (or t_length), <span style="font-family: Symbol;">dH</span> = heasd thickness (or h_thickness) , <span style="font-family: Symbol;">Dr</span>H = SLD (headgroup) - SLD(solvent), and <span style="font-family: Symbol;">Dr</span>T = SLD (tail) - SLD(headgroup).</p> 
    4066 <p>The 2D scattering intensity is calculated in the same way as 1D, where the <em>q</em> vector is defined as<span style="font-size: 12pt; font-family: 'Times New Roman','serif'; position: relative; top: 4.5pt;"><img src="img/image040.gif" alt="" width="111" height="23" /></span><span style="font-size: 14pt;">.</span></p> 
    4067 <p><span style="font-size: 14pt;">&nbsp;</span></p> 
    4068 <p>The returned value is in units of [cm-1], on absolute scale. In the parameters, sld_tail = SLD of the tail group, and sld_head = SLD of the head group.</p> 
     4552<p>where &delta;<sub>T</sub> = tail length (or t_length), &delta;<sub>H</sub> = head thickness (or h_thickness), &Delta;&rho;<sub>H</sub> = SLD (headgroup) - SLD(solvent), and &Delta;&rho;<sub>T</sub> = SLD (tail) - SLD(solvent). 
     4553<br>(sld_tail = SLD of the tail group, and sld_head = SLD of the head group)</p> 
     4554<p>The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as:</p> 
     4555<p><img src="img/image040.gif" alt="" width="111" /></p> 
     4556<p>NOTE: The total bilayer thickness = 2(&delta;<sub>H</sub> + &delta;<sub>T</sub>)</p> 
     4557<p>The meaning of the multiplicative scale factor is not well-defined, but should be on the order of the volume fraction of solution occupied by the lamellar crystallites. Please see the original references for clarification.</p> 
    40694558<p>&nbsp;</p> 
    40704559<div align="center"> 
     
    41664655<p>Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.</p> 
    41674656<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 
    4168 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.32.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPSModel"></a><b><span style="font-size: 14pt;">LamellarPSModel</span></b></p> 
     4657<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.36.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPSModel"></a><b><span style="font-size: 14pt;">LamellarPSModel</span></b></p> 
    41694658<p>This model provides the scattering intensity (<b>form factor</b> <b>*</b> <b>structure factor</b>), I(<em>q</em>), for a lyotropic lamellar phase where a random distribution in solution are assumed.</p> 
    41704659<p>The scattering intensity I(q) is:</p> 
     
    42794768<p>Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.</p> 
    42804769<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 
    4281 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.33.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPSHGModel"></a><b><span style="font-size: 14pt;">LamellarPSHGModel</span></b></p> 
     4770<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.37.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPSHGModel"></a><b><span style="font-size: 14pt;">LamellarPSHGModel</span></b></p> 
    42824771<p>This model provides the scattering intensity (<b>form factor</b> <b>*</b> <b>structure factor</b>), I(<em>q</em>), for a lyotropic lamellar phase where a random distribution in solution are assumed. &nbsp;The SLD of the head region is taken to be different from the SLD of the tail region.</p> 
    42834772<p>The scattering intensity I(q) is:</p> 
     
    44264915<p>Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.</p> 
    44274916<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 
    4428 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.34.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPCrystalModel"></a><b><span style="font-size: 14pt;">LamellarPCrystalModel</span></b></p> 
     4917<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.38.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="LamellarPCrystalModel"></a><b><span style="font-size: 14pt;">LamellarPCrystalModel</span></b></p> 
    44294918<p>Lamella ParaCrystal Model: Calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further characterized by a Gaussian polydispersity. This model can be used for large multilamellar vesicles.</p> 
    44304919<p>The scattering intensity I(q) is calculated as:</p> 
     
    45425031<p>REFERENCE</p> 
    45435032<p>M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J. Phys. Chem. B, 103 (1999) 9888-9897.</p> 
    4544 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.35.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="SCCrystalModel"></a><b><span style="font-size: 14pt;">SC(Simple Cubic Para-)CrystalModel</span></b></p> 
     5033<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.39.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="SCCrystalModel"></a><b><span style="font-size: 14pt;">SC(Simple Cubic Para-)CrystalModel</span></b></p> 
    45455034<p>Calculates the scattering from a simple cubic lattice with paracrystalline distortion. Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution.</p> 
    45465035<p>The returned value is scaled to units of [cm-1sr-1], absolute scale.</p> 
     
    46665155<p style="text-align: center;" align="center"><b><img src="img/image157.jpg" alt="" width="447" height="322" /></b></p> 
    46675156<p style="text-align: center;" align="center"><b>Figure. 2D plot using the default values (w/200X200 pixels).</b></p> 
    4668 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.36.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="FCCrystalModel"></a><b><span style="font-size: 14pt;">FC(Face Centered Cubic Para-)CrystalModel</span></b></p> 
     5157<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.40.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="FCCrystalModel"></a><b><span style="font-size: 14pt;">FC(Face Centered Cubic Para-)CrystalModel</span></b></p> 
    46695158<p>Calculates the scattering from a face-centered cubic lattice with paracrystalline distortion. Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution.&nbsp;</p> 
    46705159<p>The returned value is scaled to units of [cm-1sr-1], absolute scale.</p> 
     
    47915280<p style="text-align: center;" align="center"><img src="img/image166.jpg" alt="" width="473" height="352" /></p> 
    47925281<p style="text-align: center;" align="center"><b>Figure. 2D plot using the default values (w/200X200 pixels).</b></p> 
    4793 <p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.37.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="BCCrystalModel"></a><b><span style="font-size: 14pt;">BC(Body Centered Cubic Para-)CrystalModel</span></b></p> 
     5282<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">2.41.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><a name="BCCrystalModel"></a><b><span style="font-size: 14pt;">BC(Body Centered Cubic Para-)CrystalModel</span></b></p> 
    47945283<p>Calculates the scattering from a body-centered cubic lattice with paracrystalline distortion. Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution.The returned value is scaled to units of [cm-1sr-1], absolute scale.</p> 
    47955284<p>The scattering intensity I(q) is calculated as:</p> 
     
    52395728<p style="margin-left: 0.25in;">The parameter L is referred to as the correlation length.</p> 
    52405729<p style="margin-left: 0.25in;">For 2D plot, the wave transfer is defined as<span style="font-size: 12pt; font-family: 'Times New Roman','serif'; position: relative; top: 4.5pt;"><img src="img/image040.gif" alt="" /></span><span style="font-size: 14pt;">.</span></p> 
     5730<p style="text-indent: 0.25in;">Note: If I(Q) is in absolute units (cm-1) scale must divided by 10^8 to convert it to &Aring;-1.</p> 
    52415731<p style="text-align: center;" align="center"><span style="font-size: 14pt;">&nbsp;</span></p> 
    52425732<div align="center"> 
     
    52595749</td> 
    52605750<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 19.25pt;" valign="top" width="143"> 
    5261 <p>None</p> 
     5751<p>&Aring;-4 </p> 
    52625752</td> 
    52635753<td style="border-width: medium 1pt 1pt medium; width: 107pt; height: 19.25pt;" valign="top" width="143"> 
     
    52965786<p style="margin-left: 0.5in;">&nbsp;</p> 
    52975787<p style="margin-left: 0.5in;">Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys. 20, 518 (1949).</p> 
    5298 <p style="margin-left: 0.25in;"><i>2013/09/09 - Description reviewed by King, S. and Parker, P.</i></p> 
     5788<p style="margin-left: 0.25in;"><i>2013/09/09, 2014/04/22 - Description reviewed by King, S. and Parker, P.</i></p> 
    52995789<p style="margin-left: 0.55in; text-indent: -0.3in;"><b><span style="font-size: 14pt;">3.6.</span></b><b><span style="font-size: 7pt;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></b><b><span style="font-size: 14pt;">&nbsp; <a name="Absolute Power_Law"></a>Absolute Power_Law </span></b></p> 
    53005790<p style="margin-left: 0.25in;">This model describes a power law with background.</p> 
Note: See TracChangeset for help on using the changeset viewer.