Changeset 55db501 in sasview for src/sas/sascalc
- Timestamp:
- Nov 20, 2016 3:36:43 AM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- e4078ed
- Parents:
- a01af35
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/data_util/qsmearing.py
ra01af35 r55db501 15 15 import time 16 16 from sasmodels import sesans 17 18 17 import numpy as np # type: ignore 19 18 from numpy import pi, exp # type: ignore … … 61 60 # TODO: change other sanity checks to check for file loader instead of data structure? 62 61 _found_sesans = False 63 if data.dx is not None and data.meta_data['loader']=='SESANS': 62 #if data.dx is not None and data.meta_data['loader']=='SESANS': 63 if data.dx is not None and data.isSesans: 64 64 if data.dx[0] > 0.0: 65 65 _found_sesans = True … … 67 67 if _found_sesans == True: 68 68 #Pre-compute the Hankel matrix (H) 69 H0,H, q_calc = sesans.Hankelconstructor(data) 69 qmax, qunits = data.sample.zacceptance 70 Hankelinst=sesans.SesansTransform() 71 sesans.SesansTransform.set_transform(Hankelinst, 72 SE = Converter(data._xunit)(data.x, "A"), 73 zaccept = Converter(qunits)(qmax, "1/A"), 74 Rmax = 1000000) 75 H=sesans.SesansTransform._H 76 H0=sesans.SesansTransform._H0 77 q=sesans.SesansTransform.q 70 78 # Then return the actual transform, as if it were a smearing function 71 return PySmear(SESANS1D(data, H0, H, q_calc), model) 79 # applying evalDistribution to a model, with a q-space as param, returns the I(q) values that go with the q-values 80 81 return PySmear(SESANS1D(data, H0, H, q), model) 72 82 73 83 _found_resolution = False … … 175 185 width = data.dx if data.dx is not None else 0 176 186 return PySmear(Pinhole1D(q, width), model) 177 178 def sesans_smear(data, model=None):179 #This should be calculated characteristic length scale180 #Probably not a data prameter either181 #Need function to calculate this based on model182 #Here assume a number183 Rmax = 1000000184 q_calc = sesans.make_q(data.sample.zacceptance, Rmax)185 SElength=Converter(data._xunit)(data.x, "A")186 #return sesans.HankelTransform(q_calc, SElength)187 #Old return statement, running through the smearer188 #return PySmear(SESANS1D(data,q_calc),model)
Note: See TracChangeset
for help on using the changeset viewer.