Changes in / [e0de72f:5031ca3] in sasmodels
- Location:
- sasmodels
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/teubner_strey.py
rcaddb14 r40a87fa 5 5 This model calculates the scattered intensity of a two-component system 6 6 using the Teubner-Strey model. Unlike :ref:`dab` this function generates 7 a peak. A two-phase material can be characterised by two length scales - 8 a correlation length and a domain size (periodicity). 9 10 The original paper by Teubner and Strey defined the function as: 7 a peak. 11 8 12 9 .. math:: 13 10 14 I(q) \propto\frac{1}{a_2 + c_1 q^2 + c_2 q^4} + \text{background}11 I(q) = \frac{1}{a_2 + c_1 q^2 + c_2 q^4} + \text{background} 15 12 16 where the parameters $a_2$, $c_1$ and $c_2$ are defined in terms of the 17 periodicity, $d$, and correlation length $\xi$ as: 18 19 .. math:: 20 21 a_2 &= \biggl[1+\bigl(\frac{2\pi\xi}{d}\bigr)^2\biggr]\\ 22 c_1 &= -2\xi^2\bigl(\frac{2\pi\xi}{d}\bigr)^2+2\xi^2\\ 23 c_2 &= \xi^4 24 25 and thus, the periodicity, $d$ is given by 13 The parameters $a_2$, $c_1$ and $c_2$ can be used to determine the 14 characteristic domain size $d$, 26 15 27 16 .. math:: 28 17 29 18 d = 2\pi\left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} 30 -\frac14\frac{c_1}{c_2}\right]^{-1/2}19 + \frac14\frac{c_1}{c_2}\right]^{-1/2} 31 20 32 and the correlation length, $\xi$, is given by 21 22 and the correlation length $\xi$, 33 23 34 24 .. math:: 35 25 36 26 \xi = \left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} 37 +\frac14\frac{c_1}{c_2}\right]^{-1/2}27 - \frac14\frac{c_1}{c_2}\right]^{-1/2} 38 28 39 Here the model is parameterised in terms of $d$ and $\xi$ and with an explicit40 volume fraction for one phase, $\phi_a$, and contrast,41 $\delta\rho^2 = (\rho_a - \rho_b)^2$ :42 43 .. math::44 45 I(q) = \frac{8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi}46 {a_2 + c_1q^2 + c_2q^4}47 48 where :math:`8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi` is the constant of49 proportionality from the first equation above.50 51 In the case of a microemulsion, $a_2 > 0$, $c_1 < 0$, and $c_2 >0$.52 29 53 30 For 2D data, scattering intensity is calculated in the same way as 1D, … … 57 34 58 35 q = \sqrt{q_x^2 + q_y^2} 36 59 37 60 38 References … … 66 44 *J. Chem. Phys.*, 101 (1994) 5343 67 45 68 H Endo, M Mihailescu, M. Monkenbusch, J Allgaier, G Gompper, D Richter,69 B Jakobs, T Sottmann, R Strey, and I Grillo, *J. Chem. Phys.*, 115 (2001), 58070 46 """ 71 47 72 48 import numpy as np 73 from numpy import inf ,power,pi49 from numpy import inf 74 50 75 51 name = "teubner_strey" 76 52 title = "Teubner-Strey model of microemulsions" 77 53 description = """\ 78 Calculates scattering according to the Teubner-Strey model 54 Scattering model class for the Teubner-Strey model given by 55 Provide F(x) = 1/( a2 + c1 q^2+ c2 q^4 ) + background 56 a2>0, c1<0, c2>0, 4 a2 c2 - c1^2 > 0 79 57 """ 80 58 category = "shape-independent" … … 82 60 # ["name", "units", default, [lower, upper], "type","description"], 83 61 parameters = [ 84 ["volfraction_a", "", 0.5, [0, 1.0], "", "Volume fraction of phase a"], 85 ["sld_a", "1e-6/Ang^2", 0.3, [-inf, inf], "", "SLD of phase a"], 86 ["sld_b", "1e-6/Ang^2", 6.3, [-inf, inf], "", "SLD of phase b"], 87 ["d", "Ang", 100.0, [0, inf], "", "Domain size (periodicity)"], 88 ["xi", "Ang", 30.0, [0, inf], "", "Correlation length"], 62 ["a2", "", 0.1, [0, inf], "", "a2"], 63 ["c1", "1e-6/Ang^2", -30., [-inf, 0], "", "c1"], 64 ["c2", "Ang", 5000., [0, inf], "volume", "c2"], 89 65 ] 90 66 91 def Iq(q, volfraction, sld, sld_solvent,d,xi):67 def Iq(q, a2, c1, c2): 92 68 """SAS form""" 93 drho2 = (sld-sld_solvent)*(sld-sld_solvent) 94 a2 = power(1.0+power(2.0*pi*xi/d,2.0),2.0) 95 c1 = -2.0*xi*xi*power(2.0*pi*xi/d,2.0)+2*xi*xi 96 c2 = power(xi,4.0) 97 prefactor = 8.0*pi*volfraction*(1.0-volfraction)*drho2*c2/xi 98 #k2 = (2.0*pi/d)*(2.0*pi/d) 99 #xi2 = 1/(xi*xi) 100 #q2 = q*q 101 #result = prefactor/((xi2+k2)*(xi2+k2)+2.0*(xi2-k2)*q2+q2*q2) 102 return 1.0e-4*prefactor / np.polyval([c2, c1, a2], q**2) 103 69 return 1. / np.polyval([c2, c1, a2], q**2) 104 70 Iq.vectorized = True # Iq accepts an array of q values 105 71 106 demo = dict(scale=1, background=0, volfraction_a=0.5, 107 sld_a=0.3, sld_b=6.3, 108 d=100.0, xi=30.0) 109 tests = [[{}, 0.06, 41.5918888453]] 72 demo = dict(scale=1, background=0, a2=0.1, c1=-30.0, c2=5000.0) 73 tests = [[{}, 0.2, 0.145927536232]] -
sasmodels/resolution.py
r69ef533 r2472141 804 804 pars = { 805 805 'scale':0.05, 806 'r adius_polar':500, 'radius_equatorial':15000,806 'r_polar':500, 'r_equatorial':15000, 807 807 'sld':6, 'sld_solvent': 1, 808 808 }
Note: See TracChangeset
for help on using the changeset viewer.