Changes in / [01c8d9e:502c7b8] in sasmodels
- Files:
-
- 5 added
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/pd/polydispersity.rst
r29afc50 rd712a0f 20 20 P(q) = \text{scale} \langle F^* F \rangle / V + \text{background} 21 21 22 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 23 average over the size distribution. 22 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 23 average over the size distribution $f(x; \bar x, \sigma)$, giving 24 25 .. math:: 26 27 P(q) = \frac{\text{scale}}{V} \int_\mathbb{R} 28 f(x; \bar x, \sigma) F^2(q, x)\, dx + \text{background} 24 29 25 30 Each distribution is characterized by a center value $\bar x$ or … … 41 46 with larger values of $N_\sigma$ required for heavier tailed distributions. 42 47 The scattering in general falls rapidly with $qr$ so the usual assumption 43 that $ G(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)G(r - 3\sigma_r)$48 that $f(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)f(r - 3\sigma_r)$ 44 49 will not contribute much to the average may not hold when particles are large. 45 50 This, too, will require increasing $N_\sigma$. … … 63 68 64 69 Additional distributions are under consideration. 70 71 .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace 72 the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), 73 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ 74 in order to make the terminology describing distributions of properties 75 unambiguous. Throughout the SasView documentation we continue to use the 76 term polydispersity because one of the consequences of the IUPAC change is 77 that orientational polydispersity would not meet their new criteria (which 78 requires dispersity to be dimensionless). 65 79 66 80 Suggested Applications -
explore/beta/sasfit_compare.py
r01c8d9e r01c8d9e 1 1 from __future__ import division, print_function 2 2 # Make sasmodels available on the path 3 import sys, os3 import sys, os 4 4 BETA_DIR = os.path.dirname(os.path.realpath(__file__)) 5 5 #SASMODELS_DIR = os.path.dirname(os.path.dirname(BETA_DIR)) 6 6 SASMODELS_DIR = r"C:\Source\sasmodels" 7 7 sys.path.insert(0, SASMODELS_DIR) 8 import os 8 9 9 from collections import namedtuple 10 10 … … 223 223 if radius_effective is None: 224 224 radius_effective = radius_eff/total_weight 225 print("this is the effective radius for pure python",radius_effective)226 225 if norm == 'sasfit': 227 226 IQD = F2 … … 232 231 # = F2/total_weight / total_volume/total_weight 233 232 # = F2/total_volume 234 235 233 IQD = F2/average_volume*1e-4*volfraction 236 234 F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 … … 245 243 IQSD = IQD*SQ 246 244 IQBD = IQD*SQ_EFF 247 print("\n\n\n\n\n this is F1" + str(F1))248 249 print("\n\n\n\n\n this is F2" + str(F2))250 print("\n\n\n\n\n this is SQ" + str(SQ))251 245 return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) 252 246 … … 340 334 Ipars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) 341 335 342 343 336 #Ppars['scale'] = Spars.get('volfraction', 1) 344 337 P = build_model(Pname, q) … … 417 410 target = sasmodels_theory(q, model, beta_mode=1, **pars) 418 411 actual = ellipsoid_pe(q, norm='sasview', **pars) 419 print(actual)420 412 title = " ".join(("sasmodels", model, pd_type)) 421 413 compare(title, target, actual) … … 460 452 Q = data[0] 461 453 F1 = data[1] 454 F2 = data[2] 462 455 P = data[3] 463 456 S = data[5] … … 471 464 Q = data[0] 472 465 F1 = data[1] 466 F2 = data[2] 473 467 P = data[3] 474 468 S = data[5] -
sasmodels/models/core_shell_sphere.py
r2d81cfe rdc76240 21 21 .. math:: 22 22 23 F ^2(q) = \frac{3}{V_s}\left[23 F(q) = \frac{3}{V_s}\left[ 24 24 V_c(\rho_c-\rho_s)\frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3} + 25 25 V_s(\rho_s-\rho_\text{solv})\frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}
Note: See TracChangeset
for help on using the changeset viewer.