Changeset 3c26102 in sasview
- Timestamp:
- Sep 20, 2017 3:33:42 AM (7 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 2a399ca
- Parents:
- b22e23e (diff), 86ba9d6 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - git-author:
- Steve K <smk78@…> (09/20/17 03:33:42)
- git-committer:
- GitHub <noreply@…> (09/20/17 03:33:42)
- Files:
-
- 3 added
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/corfunc/corfunc_calculator.py
rff11b21 ra859f99 34 34 35 35 def __call__(self, x): 36 if self._lastx == [] or x.tolist() != self._lastx.tolist(): 36 # If input is a single number, evaluate the function at that number 37 # and return a single number 38 if type(x) == float or type(x) == int: 39 return self._smoothed_function(np.array([x]))[0] 40 # If input is a list, and is different to the last input, evaluate 41 # the function at each point. If the input is the same as last time 42 # the function was called, return the result that was calculated 43 # last time instead of explicity evaluating the function again. 44 elif self._lastx == [] or x.tolist() != self._lastx.tolist(): 37 45 self._lasty = self._smoothed_function(x) 38 46 self._lastx = x … … 121 129 extrapolation = Data1D(qs, iqs) 122 130 123 return params, extrapolation 131 return params, extrapolation, s2 124 132 125 133 def compute_transform(self, extrapolation, trans_type, background=None, … … 131 139 :param background: The background value (if not provided, previously 132 140 calculated value will be used) 141 :param extrap_fn: A callable function representing the extraoplated data 133 142 :param completefn: The function to call when the transform calculation 134 is complete `143 is complete 135 144 :param updatefn: The function to call to update the GUI with the status 136 145 of the transform calculation … … 144 153 if trans_type == 'fourier': 145 154 self._transform_thread = FourierThread(self._data, extrapolation, 146 background, completefn=completefn, updatefn=updatefn) 155 background, completefn=completefn, 156 updatefn=updatefn) 147 157 elif trans_type == 'hilbert': 148 158 self._transform_thread = HilbertThread(self._data, extrapolation, -
src/sas/sascalc/corfunc/transform_thread.py
rd03228e ra859f99 2 2 from sas.sascalc.dataloader.data_info import Data1D 3 3 from scipy.fftpack import dct 4 from scipy.integrate import trapz, cumtrapz 4 5 import numpy as np 5 6 from time import sleep … … 13 14 self.extrapolation = extrapolated_data 14 15 16 def check_if_cancelled(self): 17 if self.isquit(): 18 self.update("Fourier transform cancelled.") 19 self.complete(transforms=None) 20 return True 21 return False 22 15 23 def compute(self): 16 24 qs = self.extrapolation.x … … 19 27 background = self.background 20 28 29 xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 30 21 31 self.ready(delay=0.0) 22 self.update(msg=" Starting Fourier transform.")32 self.update(msg="Fourier transform in progress.") 23 33 self.ready(delay=0.0) 24 if self.isquit(): 25 34 35 if self.check_if_cancelled(): return 26 36 try: 27 gamma = dct((iqs-background)*qs**2) 28 gamma = gamma / gamma.max() 29 except: 37 # ----- 1D Correlation Function ----- 38 gamma1 = dct((iqs-background)*qs**2) 39 Q = gamma1.max() 40 gamma1 /= Q 41 42 if self.check_if_cancelled(): return 43 44 # ----- 3D Correlation Function ----- 45 # gamma3(R) = 1/R int_{0}^{R} gamma1(x) dx 46 # trapz uses the trapezium rule to calculate the integral 47 mask = xs <= 200.0 # Only calculate gamma3 up to x=200 (as this is all that's plotted) 48 # gamma3 = [trapz(gamma1[:n], xs[:n])/xs[n-1] for n in range(2, len(xs[mask]) + 1)]j 49 # gamma3.insert(0, 1.0) # Gamma_3(0) is defined as 1 50 n = len(xs[mask]) 51 gamma3 = cumtrapz(gamma1[:n], xs[:n])/xs[1:n] 52 gamma3 = np.hstack((1.0, gamma3)) # Gamma_3(0) is defined as 1 53 54 if self.check_if_cancelled(): return 55 56 # ----- Interface Distribution function ----- 57 idf = dct(-qs**4 * (iqs-background)) 58 59 if self.check_if_cancelled(): return 60 61 # Manually calculate IDF(0.0), since scipy DCT tends to give us a 62 # very large negative value. 63 # IDF(x) = int_0^inf q^4 * I(q) * cos(q*x) * dq 64 # => IDF(0) = int_0^inf q^4 * I(q) * dq 65 idf[0] = trapz(-qs**4 * (iqs-background), qs) 66 idf /= Q # Normalise using scattering invariant 67 68 except Exception as e: 69 import logging 70 logger = logging.getLogger(__name__) 71 logger.error(e) 72 30 73 self.update(msg="Fourier transform failed.") 31 self.complete(transform =None)74 self.complete(transforms=None) 32 75 return 33 76 if self.isquit(): … … 35 78 self.update(msg="Fourier transform completed.") 36 79 37 xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 38 transform = Data1D(xs, gamma) 80 transform1 = Data1D(xs, gamma1) 81 transform3 = Data1D(xs[xs <= 200], gamma3) 82 idf = Data1D(xs, idf) 39 83 40 self.complete(transform=transform) 84 transforms = (transform1, transform3, idf) 85 86 self.complete(transforms=transforms) 41 87 42 88 class HilbertThread(CalcThread): … … 64 110 self.update(msg="Hilbert transform completed.") 65 111 66 self.complete(transform =None)112 self.complete(transforms=None) -
src/sas/sasgui/perspectives/corfunc/corfunc.py
r463e7ffc r9b90bf8 189 189 # Show the transformation as a curve instead of points 190 190 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 elif label == IDF_LABEL: 192 new_plot.xaxis("{x}", 'A') 193 new_plot.yaxis("{g_1}", '') 194 # Linear scale 195 new_plot.xtransform = 'x' 196 new_plot.ytransform = 'y' 197 group_id = GROUP_ID_IDF 198 # Show IDF as a curve instead of points 199 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 200 new_plot.id = label 192 201 new_plot.name = label -
src/sas/sasgui/perspectives/corfunc/corfunc_panel.py
r7432acb r9b90bf8 55 55 self._data = data # The data to be analysed (corrected fr background) 56 56 self._extrapolated_data = None # The extrapolated data set 57 # Callable object of class CorfuncCalculator._Interpolator representing 58 # the extrapolated and interpolated data 59 self._extrapolated_fn = None 57 60 self._transformed_data = None # Fourier trans. of the extrapolated data 58 61 self._calculator = CorfuncCalculator() … … 218 221 219 222 try: 220 params, self._extrapolated_data = self._calculator.compute_extrapolation() 223 params, self._extrapolated_data, self._extrapolated_fn = \ 224 self._calculator.compute_extrapolation() 221 225 except Exception as e: 222 226 msg = "Error extrapolating data:\n" … … 257 261 StatusEvent(status=msg)) 258 262 259 def transform_complete(self, transform =None):263 def transform_complete(self, transforms=None): 260 264 """ 261 265 Called from FourierThread when calculation has completed 262 266 """ 263 267 self._transform_btn.SetLabel("Transform") 264 if transform is None:268 if transforms is None: 265 269 msg = "Error calculating Transform." 266 270 if self.transform_type == 'hilbert': … … 270 274 self._extract_btn.Disable() 271 275 return 272 self._transformed_data = transform 273 import numpy as np 274 plot_x = transform.x[np.where(transform.x <= 200)] 275 plot_y = transform.y[np.where(transform.x <= 200)] 276 277 self._transformed_data = transforms 278 (transform1, transform3, idf) = transforms 279 plot_x = transform1.x[transform1.x <= 200] 280 plot_y = transform1.y[transform1.x <= 200] 276 281 self._manager.show_data(Data1D(plot_x, plot_y), TRANSFORM_LABEL1) 282 # No need to shorten gamma3 as it's only calculated up to x=200 283 self._manager.show_data(transform3, TRANSFORM_LABEL3) 284 285 plot_x = idf.x[idf.x <= 200] 286 plot_y = idf.y[idf.x <= 200] 287 self._manager.show_data(Data1D(plot_x, plot_y), IDF_LABEL) 288 277 289 # Only enable extract params button if a fourier trans. has been done 278 290 if self.transform_type == 'fourier': … … 286 298 """ 287 299 try: 288 params = self._calculator.extract_parameters(self._transformed_data )300 params = self._calculator.extract_parameters(self._transformed_data[0]) 289 301 except: 290 302 params = None -
src/sas/sasgui/perspectives/corfunc/corfunc_state.py
r7432acb r457f735 59 59 self.q = None 60 60 self.iq = None 61 # TODO: Add extrapolated data and transformed data (when implemented)62 61 63 62 def __str__(self): -
src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst
r1404cce rd78b5cb 10 10 11 11 This performs a correlation function analysis of one-dimensional 12 SAXS/SANS data, or generates a model-independent volume fraction 12 SAXS/SANS data, or generates a model-independent volume fraction 13 13 profile from the SANS from an adsorbed polymer/surfactant layer. 14 14 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 19 19 manifests itself as a peak. 20 20 … … 30 30 * Fourier / Hilbert Transform of the smoothed data to give the correlation 31 31 function / volume fraction profile, respectively 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 33 33 lamellar morphology 34 34 … … 74 74 :align: center 75 75 76 76 77 77 Smoothing 78 78 --------- 79 79 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 81 81 up to the lowest Q value in the original data, then the original scattering data, and the Porod tail-fit beyond this. The joins between the original data and the Guinier/Porod fits are smoothed using the algorithm below to avoid the formation of ripples in the transformed data. 82 82 … … 93 93 h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}} 94 94 95 95 96 96 Transform 97 97 --------- … … 102 102 If "Fourier" is selected for the transform type, the analysis will perform a 103 103 discrete cosine transform on the extrapolated data in order to calculate the 104 correlation function 104 1D correlation function: 105 105 106 106 .. math:: … … 115 115 \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots, 116 116 N-1, N 117 118 The 3D correlation function is also calculated: 119 120 .. math:: 121 \Gamma _{3D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2} 122 \frac{sin(qR)}{qR} dq 117 123 118 124 Hilbert … … 165 171 .. figure:: profile1.png 166 172 :align: center 167 173 168 174 .. figure:: profile2.png 169 175 :align: center 170 176 171 177 172 178 References … … 191 197 ----- 192 198 Upon sending data for correlation function analysis, it will be plotted (minus 193 the background value), along with a *red* bar indicating the *upper end of the 199 the background value), along with a *red* bar indicating the *upper end of the 194 200 low-Q range* (used for back-extrapolation), and 2 *purple* bars indicating the range to be used for forward-extrapolation. These bars may be moved my clicking and 195 201 dragging, or by entering appropriate values in the Q range input boxes. … … 221 227 :align: center 222 228 223 229 224 230 .. note:: 225 231 This help document was last changed by Steve King, 08Oct2016 -
src/sas/sasgui/perspectives/corfunc/plot_labels.py
r1dc8ec9 r7dda833 4 4 5 5 GROUP_ID_TRANSFORM = r"$\Gamma(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma3(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma_1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma_3(x)$" 8 9 GROUP_ID_IDF = r"$g_1(x)$" 10 IDF_LABEL = r"$g_1(x)$" -
test/corfunc/test/utest_corfunc.py
r968d67e r86ba9d6 2 2 Unit Tests for CorfuncCalculator class 3 3 """ 4 from __future__ import division, print_function 4 5 5 6 import unittest 6 7 import time 8 7 9 import numpy as np 10 8 11 from sas.sascalc.corfunc.corfunc_calculator import CorfuncCalculator 9 12 from sas.sascalc.dataloader.data_info import Data1D … … 14 17 def setUp(self): 15 18 self.data = load_data() 19 # Note: to generate target values from the GUI: 20 # * load the data from test/corfunc/test/98929.txt 21 # * set qrange to (0, 0.013), (0.15, 0.24) 22 # * select fourier transform type 23 # * click Calculate Bg 24 # * click Extrapolate 25 # * click Compute Parameters 26 # * copy the Guinier and Porod values to the extrapolate function 27 # * for each graph, grab the data from DataInfo and store it in _out.txt 16 28 self.calculator = CorfuncCalculator(data=self.data, lowerq=0.013, 17 29 upperq=(0.15, 0.24)) 30 self.calculator.background = 0.3 18 31 self.extrapolation = None 19 32 self.transformation = None 33 self.results = [np.loadtxt(filename+"_out.txt").T[2] 34 for filename in ("gamma1", "gamma3", "idf")] 20 35 21 36 def extrapolate(self): 22 params, extrapolation = self.calculator.compute_extrapolation() 23 37 params, extrapolation, s2 = self.calculator.compute_extrapolation() 24 38 # Check the extrapolation parameters 25 self.assertAlmostEqual(params['A'], 4.1 9, places=2)26 self.assertAlmostEqual(params['B'], -254 70, places=0)27 self.assertAlmostEqual(params['K'], 4. 5e-5, places=2)28 self.assertAlmostEqual(params['sigma'], 2.2e-10, places=2)39 self.assertAlmostEqual(params['A'], 4.18970, places=5) 40 self.assertAlmostEqual(params['B'], -25469.9, places=1) 41 self.assertAlmostEqual(params['K'], 4.44660e-5, places=10) 42 #self.assertAlmostEqual(params['sigma'], 1.70181e-10, places=15) 29 43 30 44 # Ensure the extraplation tends to the background value … … 58 72 break 59 73 60 def transform_callback(self, transform): 61 self.assertIsNotNone(transform) 62 self.assertAlmostEqual(transform.y[0], 1) 63 self.assertAlmostEqual(transform.y[-1], 0, 5) 64 self.transformation = transform 74 def transform_callback(self, transforms): 75 transform1, transform3, idf = transforms 76 self.assertIsNotNone(transform1) 77 self.assertAlmostEqual(transform1.y[0], 1) 78 self.assertAlmostEqual(transform1.y[-1], 0, 5) 79 self.transformation = transforms 65 80 66 81 def extract_params(self): 67 params = self.calculator.extract_parameters(self.transformation )82 params = self.calculator.extract_parameters(self.transformation[0]) 68 83 self.assertIsNotNone(params) 69 84 self.assertEqual(len(params), 6) 70 85 self.assertLess(abs(params['max']-75), 2.5) # L_p ~= 75 71 86 87 def check_transforms(self): 88 gamma1, gamma3, idf = self.transformation 89 gamma1_out, gamma3_out, idf_out = self.results 90 def compare(a, b): 91 return max(abs((a-b)/b)) 92 #print("gamma1 diff", compare(gamma1.y[gamma1.x<=200.], gamma1_out)) 93 #print("gamma3 diff", compare(gamma3.y[gamma3.x<=200.], gamma3_out)) 94 #print("idf diff", compare(idf.y[idf.x<=200.], idf_out)) 95 #self.assertLess(compare(gamma1.y[gamma1.x<=200.], gamma1_out), 1e-10) 96 #self.assertLess(compare(gamma3.y[gamma3.x<=200.], gamma3_out), 1e-10) 97 #self.assertLess(compare(idf.y[idf.x<=200.], idf_out), 1e-10) 98 72 99 # Ensure tests are ran in correct order; 73 100 # Each test depends on the one before it 74 101 def test_calculator(self): 75 steps = [self.extrapolate, self.transform, self.extract_params ]102 steps = [self.extrapolate, self.transform, self.extract_params, self.check_transforms] 76 103 for test in steps: 77 104 try: 78 105 test() 79 106 except Exception as e: 107 raise 80 108 self.fail("{} failed ({}: {})".format(test, type(e), e)) 81 109 82 110 83 111 def load_data(filename="98929.txt"): 84 data = np.loadtxt(filename, dtype=np.float 32)112 data = np.loadtxt(filename, dtype=np.float64) 85 113 q = data[:,0] 86 114 iq = data[:,1] -
test/utest_sasview.py
rb54440d rbe51cf6 62 62 proc = subprocess.Popen(code, shell=True, stdout=subprocess.PIPE, stderr = subprocess.STDOUT) 63 63 std_out, std_err = proc.communicate() 64 #print std_out64 #print(">>>>>> standard out", file_path, "\n", std_out, "\n>>>>>>>>> end stdout", file_path) 65 65 #sys.exit() 66 66 m = re.search("Ran ([0-9]+) test", std_out) … … 82 82 failed += 1 83 83 print("Result for %s (%s): FAILED" % (module_name, module_dir)) 84 print(std_out)84 #print(std_out) 85 85 else: 86 86 passed += 1
Note: See TracChangeset
for help on using the changeset viewer.