Changes in / [e796fcb:3556ad7] in sasmodels
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/conf.py
r4a21670c r9404dd3 231 231 with open('rst_prolog') as fid: 232 232 rst_prolog = fid.read() 233 234 numfig = True -
sasmodels/models/cylinder.py
r5933c7f r2f63032 31 31 To provide easy access to the orientation of the cylinder, we define the 32 32 axis of the cylinder using two angles $\theta$ and $\phi$. Those angles 33 are defined in :numref:`figure # <cylinder-angle-definition>`.33 are defined in :numref:`figure #cylinder-angle-definition`. 34 34 35 35 .. _cylinder-angle-definition: -
sasmodels/models/fractal.py
rdff1088 r12dbc90 48 48 **Author:** N/A **on:** 49 49 50 ** Last Modified by:** Paul Butler **on:** March 20, 201650 **Modified by:** Paul Butler **on:** March 18, 2016 51 51 52 ** Last Reviewed by:** Paul Butler **on:** March 20, 201652 **Reviewed by:** Paul Butler **on:** March 18, 2016 53 53 54 54 """ … … 96 96 source = ["lib/sph_j1c.c", "lib/sas_gamma.c", "fractal.c"] 97 97 98 demo = dict(volfraction=0.05, 98 demo = dict(scale=1, background=0, 99 volfraction=0.05, 99 100 radius=5.0, 100 101 fractal_dim=2.0, … … 114 115 # NOTE: test results taken from values returned by SasView 3.1.2 115 116 tests = [ 116 [{}, 0.0005, 40.4980069872], 117 [{}, 0.234734468938, 0.0947143166058], 118 [{}, 0.5, 0.0176878183458], 117 [{}, 0.234959183673, 0.0910228716283], 118 [{}, 0.5, 0.016235799134], 119 119 ] -
sasmodels/models/parallelepiped.py
r5933c7f r2f63032 7 7 ---------- 8 8 9 | This model calculates the scattering from a rectangular parallelepiped (:numref:`Figure # <parallelepiped-image>`).9 | This model calculates the scattering from a rectangular parallelepiped (:numref:`Figure #parallelepiped-image`). 10 10 | If you need to apply polydispersity, see also :ref:`rectangular-prism`. 11 11 -
sasmodels/models/triaxial_ellipsoid.py
r5933c7f r2f63032 36 36 we define the axis of the cylinder using the angles $\theta$, $\phi$ 37 37 and $\psi$. These angles are defined on 38 :numref:`figure # <triaxial-ellipsoid-angles>`.38 :numref:`figure #triaxial-ellipsoid-angles`. 39 39 The angle $\psi$ is the rotational angle around its own $c$ axis 40 40 against the $q$ plane. For example, $\psi = 0$ when the
Note: See TracChangeset
for help on using the changeset viewer.