Changes in / [630156b:2f9f1ec] in sasmodels
- Files:
-
- 10 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/direct_model.py
ra769b54 r2cdc35b 202 202 203 203 if self.data_type == 'sesans': 204 q = sesans.make_q(data.sample.zacceptance, data.Rmax) 205 index = slice(None, None) 206 res = None 207 if data.y is not None: 208 Iq, dIq = data.y, data.dy 204 from sas.sascalc.data_util.nxsunit import Converter 205 qmax, qunits = data.sample.zacceptance 206 SElength = Converter(data._xunit)(data.x, "A") 207 zaccept = Converter(qunits)(qmax, "1/A"), 208 Rmax = 10000000 209 index = slice(None, None) # equivalent to index [:] 210 Iq = data.y[index] 211 dIq = data.dy[index] 212 oriented = getattr(data, 'oriented', False) 213 if oriented: 214 res = sesans.OrientedSesansTransform(data.x[index], SElength, zaccept, Rmax) 215 # Oriented sesans transform produces q_calc = [qx, qy] 216 q_vectors = res.q_calc 209 217 else: 210 Iq, dIq = None, None 211 #self._theory = np.zeros_like(q) 212 q_vectors = [q] 213 q_mono = sesans.make_all_q(data) 218 res = sesans.SesansTransform(data.x[index], SElength, zaccept, Rmax) 219 # Unoriented sesans transform produces q_calc = q 220 q_vectors = [res.q_calc] 214 221 elif self.data_type == 'Iqxy': 215 222 #if not model.info.parameters.has_2d: … … 230 237 #self._theory = np.zeros_like(self.Iq) 231 238 q_vectors = res.q_calc 232 q_mono = []233 239 elif self.data_type == 'Iq': 234 240 index = (data.x >= data.qmin) & (data.x <= data.qmax) … … 255 261 #self._theory = np.zeros_like(self.Iq) 256 262 q_vectors = [res.q_calc] 257 q_mono = []258 263 elif self.data_type == 'Iq-oriented': 259 264 index = (data.x >= data.qmin) & (data.x <= data.qmax) … … 272 277 qy_width=data.dxl[index]) 273 278 q_vectors = res.q_calc 274 q_mono = []275 279 else: 276 280 raise ValueError("Unknown data type") # never gets here … … 279 283 # so we can save/restore state 280 284 self._kernel_inputs = q_vectors 281 self._kernel_mono_inputs = q_mono282 285 self._kernel = None 283 286 self.Iq, self.dIq, self.index = Iq, dIq, index … … 306 309 if self._kernel is None: 307 310 self._kernel = self._model.make_kernel(self._kernel_inputs) 308 self._kernel_mono = (309 self._model.make_kernel(self._kernel_mono_inputs)310 if self._kernel_mono_inputs else None)311 311 312 312 Iq_calc = call_kernel(self._kernel, pars, cutoff=cutoff) … … 316 316 # TODO: refactor so we don't store the result in the model 317 317 self.Iq_calc = None 318 if self.data_type == 'sesans': 319 Iq_mono = (call_kernel(self._kernel_mono, pars, mono=True) 320 if self._kernel_mono_inputs else None) 321 result = sesans.transform(self._data, 322 self._kernel_inputs[0], Iq_calc, 323 self._kernel_mono_inputs, Iq_mono) 324 else: 325 result = self.resolution.apply(Iq_calc) 326 if hasattr(self.resolution, 'nx'): 327 self.Iq_calc = ( 328 self.resolution.qx_calc, self.resolution.qy_calc, 329 np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) 330 ) 318 result = self.resolution.apply(Iq_calc) 319 if hasattr(self.resolution, 'nx'): 320 self.Iq_calc = ( 321 self.resolution.qx_calc, self.resolution.qy_calc, 322 np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) 323 ) 331 324 return result 332 325 -
sasmodels/sesans.py
r94d13f1 r2cdc35b 20 20 Spin-Echo SANS transform calculator. Similar to a resolution function, 21 21 the SesansTransform object takes I(q) for the set of *q_calc* values and 22 produces a transformed dataset 22 produces a transformed dataset. 23 23 24 24 *SElength* (A) is the set of spin-echo lengths in the measured data. … … 48 48 49 49 def apply(self, Iq): 50 # tye: (np.ndarray) -> np.ndarray51 50 G0 = np.dot(self._H0, Iq) 52 51 G = np.dot(self._H.T, Iq) … … 73 72 self.q_calc = q 74 73 self._H, self._H0 = H, H0 74 75 class OrientedSesansTransform(object): 76 """ 77 Oriented Spin-Echo SANS transform calculator. Similar to a resolution 78 function, the OrientedSesansTransform object takes I(q) for the set 79 of *q_calc* values and produces a transformed dataset. 80 81 *SElength* (A) is the set of spin-echo lengths in the measured data. 82 83 *zaccept* (1/A) is the maximum acceptance of scattering vector in the spin 84 echo encoding dimension (for ToF: Q of min(R) and max(lam)). 85 86 *Rmax* (A) is the maximum size sensitivity; larger radius requires more 87 computation time. 88 """ 89 #: SElength from the data in the original data units; not used by transform 90 #: but the GUI uses it, so make sure that it is present. 91 q = None # type: np.ndarray 92 93 #: q values to calculate when computing transform 94 q_calc = None # type: np.ndarray 95 96 # transform arrays 97 _cosmat = None # type: np.ndarray 98 _cos0 = None # type: np.ndarray 99 _Iq_shape = None # type: Tuple[int, int] 100 101 def __init__(self, z, SElength, zaccept, Rmax): 102 # type: (np.ndarray, float, float) -> None 103 #import logging; logging.info("creating SESANS transform") 104 self.q = z 105 self._set_cosmat(SElength, zaccept, Rmax) 106 107 def apply(self, Iq): 108 dq = self.q_calc[0][0] 109 Iq = np.reshape(Iq, self._Iq_shape) 110 G0 = self._cos0 * np.sum(Iq) * dq 111 G = np.sum(np.dot(Iq, self._cosmat), axis=0) * dq 112 P = G - G0 113 return P 114 115 def _set_cosmat(self, SElength, zaccept, Rmax): 116 # type: (np.ndarray, float, float) -> None 117 # Force float32 arrays, otherwise run into memory problems on some machines 118 SElength = np.asarray(SElength, dtype='float32') 119 120 # Rmax = #value in text box somewhere in FitPage? 121 q_max = 2 * pi / (SElength[1] - SElength[0]) 122 q_min = 0.1 * 2 * pi / (np.size(SElength) * SElength[-1]) 123 q_min *= 100 124 125 q = np.arange(q_min, q_max, q_min, dtype='float32') 126 dq = q_min 127 128 cos0 = np.float32(dq / (2 * pi)) 129 cosmat = np.float32(dq / (2 * pi)) * np.cos(q[:, None] * SElength[None, :]) 130 131 qx, qy = np.meshgrid(q, q) 132 self._Iq_shape = qx.shape 133 self.q_calc = qx.flatten(), qy.flatten() 134 self._cosmat, self._cos0 = cosmat, cos0
Note: See TracChangeset
for help on using the changeset viewer.