- Timestamp:
- Oct 26, 2016 11:37:23 AM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 8bd5840, b61bd57, b0e0183
- Parents:
- 907186d
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sasgui/perspectives/fitting/media/plugin.rst
r907186d r20cfa23 615 615 and complementary error function 616 616 $\text{erfc}(x) = \frac{1}{\sqrt\pi}\int_x^\inf e^{-t^2}\,dt$. 617 The standard ma nth library erf and erfc are slower and broken617 The standard math library erf and erfc are slower and broken 618 618 on some platforms. 619 619 … … 621 621 622 622 sas_J0: 623 Bessel function sof the first kind where623 Bessel function of the first kind where 624 624 $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. 625 625 … … 627 627 628 628 sas_J1: 629 Bessel function sof the first kind where629 Bessel function of the first kind where 630 630 $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. 631 631 … … 633 633 634 634 sas_JN: 635 Bessel function sof the first kind where635 Bessel function of the first kind where 636 636 $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. 637 637 … … 654 654 Bessel form $F(qr) = 2 J_1(qr)/{(qr)}$, with a limiting value of 1 at $qr=0$. 655 655 656 :code:`source = ["lib/polevl.c", "lib/sas_J1 c.c", ...]`656 :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]` 657 657 658 658 Gauss76z[i], Gauss76Wt[i]:
Note: See TracChangeset
for help on using the changeset viewer.