Changes in / [4050e6a:1aa7990] in sasmodels


Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/resolution.py

    rb397165 rb32caab  
    1717 
    1818MINIMUM_RESOLUTION = 1e-8 
    19  
    20  
    21 # When extrapolating to -q, what is the minimum positive q relative to q_min 
    22 # that we wish to calculate? 
    23 MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION = 0.01 
     19MINIMUM_ABSOLUTE_Q = 0.02  # relative to the minimum q in the data 
    2420 
    2521class Resolution(object): 
     
    8278        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma) 
    8379                       if q_calc is None else np.sort(q_calc)) 
     80 
     81        # Protect against models which are not defined for very low q.  Limit 
     82        # the smallest q value evaluated (in absolute) to 0.02*min 
     83        cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q) 
     84        self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff] 
     85 
     86        # Build weight matrix from calculated q values 
    8487        self.weight_matrix = pinhole_resolution(self.q_calc, self.q, 
    8588                                np.maximum(q_width, MINIMUM_RESOLUTION)) 
     89        self.q_calc = abs(self.q_calc) 
    8690 
    8791    def apply(self, theory): 
     
    123127        self.q_calc = slit_extend_q(q, qx_width, qy_width) \ 
    124128            if q_calc is None else np.sort(q_calc) 
     129 
     130        # Protect against models which are not defined for very low q.  Limit 
     131        # the smallest q value evaluated (in absolute) to 0.02*min 
     132        cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q) 
     133        self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff] 
     134 
     135        # Build weight matrix from calculated q values 
    125136        self.weight_matrix = \ 
    126137            slit_resolution(self.q_calc, self.q, qx_width, qy_width) 
     138        self.q_calc = abs(self.q_calc) 
    127139 
    128140    def apply(self, theory): 
     
    153165    # neither trapezoid nor Simpson's rule improved the accuracy. 
    154166    edges = bin_edges(q_calc) 
    155     edges[edges < 0.0] = 0.0 # clip edges below zero 
     167    #edges[edges < 0.0] = 0.0 # clip edges below zero 
    156168    cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :]) 
    157169    weights = cdf[1:] - cdf[:-1] 
     
    286298    # The current algorithm is a midpoint rectangle rule. 
    287299    q_edges = bin_edges(q_calc) # Note: requires q > 0 
    288     q_edges[q_edges < 0.0] = 0.0 # clip edges below zero 
     300    #q_edges[q_edges < 0.0] = 0.0 # clip edges below zero 
    289301    weights = np.zeros((len(q), len(q_calc)), 'd') 
    290302 
     
    392404    interval. 
    393405 
    394     if *q_min* is zero or less then *q[0]/10* is used instead. 
     406    Note that extrapolated values may be negative. 
    395407    """ 
    396408    q = np.sort(q) 
    397409    if q_min + 2*MINIMUM_RESOLUTION < q[0]: 
    398         if q_min <= 0: q_min = q_min*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION 
    399410        n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15 
    400411        q_low = np.linspace(q_min, q[0], n_low+1)[:-1] 
     
    448459        log_delta_q = log(10.) / points_per_decade 
    449460    if q_min < q[0]: 
    450         if q_min < 0: q_min = q[0]*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION 
     461        if q_min < 0: q_min = q[0]*MINIMUM_ABSOLUTE_Q 
    451462        n_low = log_delta_q * (log(q[0])-log(q_min)) 
    452463        q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1] 
Note: See TracChangeset for help on using the changeset viewer.