Changes in sasmodels/data.py [d86f0fc:1a8c11c] in sasmodels


Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/data.py

    rd86f0fc r1a8c11c  
    3636 
    3737import numpy as np  # type: ignore 
     38from numpy import sqrt, sin, cos, pi 
    3839 
    3940# pylint: disable=unused-import 
     
    301302 
    302303 
    303 def empty_data1D(q, resolution=0.0): 
     304def empty_data1D(q, resolution=0.0, L=0., dL=0.): 
    304305    # type: (np.ndarray, float) -> Data1D 
    305     """ 
     306    r""" 
    306307    Create empty 1D data using the given *q* as the x value. 
    307308 
    308     *resolution* dq/q defaults to 5%. 
     309    rms *resolution* $\Delta q/q$ defaults to 0%.  If wavelength *L* and rms 
     310    wavelength divergence *dL* are defined, then *resolution* defines 
     311    rms $\Delta \theta/\theta$ for the lowest *q*, with $\theta$ derived from 
     312    $q = 4\pi/\lambda \sin(\theta)$. 
    309313    """ 
    310314 
     
    313317    Iq, dIq = None, None 
    314318    q = np.asarray(q) 
    315     data = Data1D(q, Iq, dx=resolution * q, dy=dIq) 
     319    if L != 0 and resolution != 0: 
     320        theta = np.arcsin(q*L/(4*pi)) 
     321        dtheta = theta[0]*resolution 
     322        ## Solving Gaussian error propagation from 
     323        ##   Dq^2 = (dq/dL)^2 DL^2 + (dq/dtheta)^2 Dtheta^2 
     324        ## gives 
     325        ##   (Dq/q)^2 = (DL/L)**2 + (Dtheta/tan(theta))**2 
     326        ## Take the square root and multiply by q, giving 
     327        ##   Dq = (4*pi/L) * sqrt((sin(theta)*dL/L)**2 + (cos(theta)*dtheta)**2) 
     328        dq = (4*pi/L) * sqrt((sin(theta)*dL/L)**2 + (cos(theta)*dtheta)**2) 
     329    else: 
     330        dq = resolution * q 
     331 
     332    data = Data1D(q, Iq, dx=dq, dy=dIq) 
    316333    data.filename = "fake data" 
    317334    return data 
     
    486503            # Note: masks merge, so any masked theory points will stay masked, 
    487504            # and the data mask will be added to it. 
    488             mtheory = masked_array(theory, data.mask.copy()) 
     505            #mtheory = masked_array(theory, data.mask.copy()) 
     506            theory_x = data.x[~data.mask] 
     507            mtheory = masked_array(theory) 
    489508            mtheory[~np.isfinite(mtheory)] = masked 
    490509            if view is 'log': 
    491510                mtheory[mtheory <= 0] = masked 
    492             plt.plot(data.x, scale*mtheory, '-') 
     511            plt.plot(theory_x, scale*mtheory, '-') 
    493512            all_positive = all_positive and (mtheory > 0).all() 
    494513            some_present = some_present or (mtheory.count() > 0) 
     
    526545 
    527546    if use_resid: 
    528         mresid = masked_array(resid, data.mask.copy()) 
     547        theory_x = data.x[~data.mask] 
     548        mresid = masked_array(resid) 
    529549        mresid[~np.isfinite(mresid)] = masked 
    530550        some_present = (mresid.count() > 0) 
     
    532552        if num_plots > 1: 
    533553            plt.subplot(1, num_plots, use_calc + 2) 
    534         plt.plot(data.x, mresid, '.') 
     554        plt.plot(theory_x, mresid, '.') 
    535555        plt.xlabel("$q$/A$^{-1}$") 
    536556        plt.ylabel('residuals') 
Note: See TracChangeset for help on using the changeset viewer.