Changes in / [aa8c6e0:153f8f6] in sasmodels
- Files:
-
- 1 deleted
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/plugin.rst
r81751c2 r81751c2 744 744 erf, erfc, tgamma, lgamma: **do not use** 745 745 Special functions that should be part of the standard, but are missing 746 or inaccurate on some platforms. Use sas_erf, sas_erfc ,sas_gamma747 and sas_lgamma instead (see below).746 or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma 747 instead (see below). Note: lgamma(x) has not yet been tested. 748 748 749 749 Some non-standard constants and functions are also provided: … … 812 812 Gamma function sas_gamma\ $(x) = \Gamma(x)$. 813 813 814 The standard math function, tgamma(x) ,is unstable for $x < 1$814 The standard math function, tgamma(x) is unstable for $x < 1$ 815 815 on some platforms. 816 816 817 817 :code:`source = ["lib/sas_gamma.c", ...]` 818 818 (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_) 819 820 sas_gammaln(x):821 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$.822 823 The standard math function, lgamma(x), is incorrect for single824 precision on some platforms.825 826 :code:`source = ["lib/sas_gammainc.c", ...]`827 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)828 829 sas_gammainc(a, x), sas_gammaincc(a, x):830 Incomplete gamma function831 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$832 and complementary incomplete gamma function833 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$834 835 :code:`source = ["lib/sas_gammainc.c", ...]`836 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)837 819 838 820 sas_erf(x), sas_erfc(x): … … 872 854 If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. 873 855 874 Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100].875 876 856 The standard math function jn(n, x) is not available on all platforms. 877 857 … … 882 862 Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 883 863 884 Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100].885 886 864 This function uses Taylor series for small and large arguments: 887 865 888 For large arguments use the following Taylor series,866 For large arguments, 889 867 890 868 .. math:: … … 894 872 - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) 895 873 896 For small arguments 874 For small arguments, 897 875 898 876 .. math:: -
explore/precision.py
rfba9ca0 ree60aa7 95 95 neg: [-100,100] 96 96 97 For arbitrary range use "start:stop:steps:scale" where scale is98 one of log, lin, or linear.99 100 97 *diff* is "relative", "absolute" or "none" 101 98 … … 105 102 linear = not xrange.startswith("log") 106 103 if xrange == "zoom": 107 start, stop,steps = 1000, 1010, 2000104 lin_min, lin_max, lin_steps = 1000, 1010, 2000 108 105 elif xrange == "neg": 109 start, stop,steps = -100.1, 100.1, 2000106 lin_min, lin_max, lin_steps = -100.1, 100.1, 2000 110 107 elif xrange == "linear": 111 start, stop,steps = 1, 1000, 2000112 start, stop,steps = 0.001, 2, 2000108 lin_min, lin_max, lin_steps = 1, 1000, 2000 109 lin_min, lin_max, lin_steps = 0.001, 2, 2000 113 110 elif xrange == "log": 114 start, stop,steps = -3, 5, 400111 log_min, log_max, log_steps = -3, 5, 400 115 112 elif xrange == "logq": 116 start, stop, steps = -4, 1, 400 117 elif ':' in xrange: 118 parts = xrange.split(':') 119 linear = parts[3] != "log" if len(parts) == 4 else True 120 steps = int(parts[2]) if len(parts) > 2 else 400 121 start = float(parts[0]) 122 stop = float(parts[1]) 123 113 log_min, log_max, log_steps = -4, 1, 400 124 114 else: 125 115 raise ValueError("unknown range "+xrange) … … 131 121 # value to x in the given precision. 132 122 if linear: 133 start = max(start, self.limits[0])134 stop = min(stop, self.limits[1])135 qrf = np.linspace( start, stop,steps, dtype='single')136 #qrf = np.linspace( start, stop,steps, dtype='double')123 lin_min = max(lin_min, self.limits[0]) 124 lin_max = min(lin_max, self.limits[1]) 125 qrf = np.linspace(lin_min, lin_max, lin_steps, dtype='single') 126 #qrf = np.linspace(lin_min, lin_max, lin_steps, dtype='double') 137 127 qr = [mp.mpf(float(v)) for v in qrf] 138 #qr = mp.linspace( start, stop,steps)128 #qr = mp.linspace(lin_min, lin_max, lin_steps) 139 129 else: 140 start = np.log10(max(10**start, self.limits[0]))141 stop = np.log10(min(10**stop, self.limits[1]))142 qrf = np.logspace( start, stop,steps, dtype='single')143 #qrf = np.logspace( start, stop,steps, dtype='double')130 log_min = np.log10(max(10**log_min, self.limits[0])) 131 log_max = np.log10(min(10**log_max, self.limits[1])) 132 qrf = np.logspace(log_min, log_max, log_steps, dtype='single') 133 #qrf = np.logspace(log_min, log_max, log_steps, dtype='double') 144 134 qr = [mp.mpf(float(v)) for v in qrf] 145 #qr = [10**v for v in mp.linspace( start, stop,steps)]135 #qr = [10**v for v in mp.linspace(log_min, log_max, log_steps)] 146 136 147 137 target = self.call_mpmath(qr, bits=500) … … 186 176 """ 187 177 if diff == "relative": 188 err = np.array([ (abs((t-a)/t) if t != 0 else a) for t, a in zip(target, actual)], 'd')178 err = np.array([abs((t-a)/t) for t, a in zip(target, actual)], 'd') 189 179 #err = np.clip(err, 0, 1) 190 180 pylab.loglog(x, err, '-', label=label) … … 207 197 return model_info 208 198 209 # Hack to allow second parameter A in two parameter functions210 A = 1211 def parse_extra_pars():212 global A213 214 A_str = str(A)215 pop = []216 for k, v in enumerate(sys.argv[1:]):217 if v.startswith("A="):218 A_str = v[2:]219 pop.append(k+1)220 if pop:221 sys.argv = [v for k, v in enumerate(sys.argv) if k not in pop]222 A = float(A_str)223 224 parse_extra_pars()225 226 199 227 200 # =============== FUNCTION DEFINITIONS ================ … … 324 297 ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]), 325 298 limits=(-3.1, 10), 326 )327 add_function(328 name="gammaln(x)",329 mp_function=mp.loggamma,330 np_function=scipy.special.gammaln,331 ocl_function=make_ocl("return sas_gammaln(q);", "sas_gammaln", ["lib/sas_gammainc.c"]),332 #ocl_function=make_ocl("return lgamma(q);", "sas_gammaln"),333 )334 add_function(335 name="gammainc(x)",336 mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a),337 np_function=lambda x, a=A: scipy.special.gammainc(a, x),338 ocl_function=make_ocl("return sas_gammainc(%.15g,q);"%A, "sas_gammainc", ["lib/sas_gammainc.c"]),339 )340 add_function(341 name="gammaincc(x)",342 mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a),343 np_function=lambda x, a=A: scipy.special.gammaincc(a, x),344 ocl_function=make_ocl("return sas_gammaincc(%.15g,q);"%A, "sas_gammaincc", ["lib/sas_gammainc.c"]),345 299 ) 346 300 add_function( … … 511 465 lanczos_gamma = """\ 512 466 const double coeff[] = { 513 76.18009172947146, -86.50532032941677,514 24.01409824083091, -1.231739572450155,467 76.18009172947146, -86.50532032941677, 468 24.01409824083091, -1.231739572450155, 515 469 0.1208650973866179e-2,-0.5395239384953e-5 516 470 }; … … 523 477 """ 524 478 add_function( 525 name="log gamma(x)",479 name="log gamma(x)", 526 480 mp_function=mp.loggamma, 527 481 np_function=scipy.special.gammaln, … … 647 601 648 602 ALL_FUNCTIONS = set(FUNCTIONS.keys()) 649 ALL_FUNCTIONS.discard("loggamma") # use cephes-based gammaln instead603 ALL_FUNCTIONS.discard("loggamma") # OCL version not ready yet 650 604 ALL_FUNCTIONS.discard("3j1/x:taylor") 651 605 ALL_FUNCTIONS.discard("3j1/x:trig") … … 663 617 -r indicates that the relative error should be plotted (default), 664 618 -x<range> indicates the steps in x, where <range> is one of the following 665 log indicates log stepping in [10^-3, 10^5] (default) 666 logq indicates log stepping in [10^-4, 10^1] 667 linear indicates linear stepping in [1, 1000] 668 zoom indicates linear stepping in [1000, 1010] 669 neg indicates linear stepping in [-100.1, 100.1] 670 start:stop:n[:stepping] indicates an n-step plot in [start, stop] 671 or [10^start, 10^stop] if stepping is "log" (default n=400) 672 Some functions (notably gammainc/gammaincc) have an additional parameter A 673 which can be set from the command line as A=value. Default is A=1. 674 675 Name is one of: 619 log indicates log stepping in [10^-3, 10^5] (default) 620 logq indicates log stepping in [10^-4, 10^1] 621 linear indicates linear stepping in [1, 1000] 622 zoom indicates linear stepping in [1000, 1010] 623 neg indicates linear stepping in [-100.1, 100.1] 624 and name is "all" or one of: 676 625 """+names) 677 626 sys.exit(1) -
sasmodels/kernelpy.py
re44432d re44432d 42 42 self.info = model_info 43 43 self.dtype = np.dtype('d') 44 logger.info("make python model " + self.info.name)45 44 46 45 def make_kernel(self, q_vectors): -
sasmodels/model_test.py
r81751c2 r81751c2 47 47 import sys 48 48 import unittest 49 import traceback50 49 51 50 try: … … 77 76 # pylint: enable=unused-import 78 77 78 79 79 def make_suite(loaders, models): 80 80 # type: (List[str], List[str]) -> unittest.TestSuite … … 87 87 *models* is the list of models to test, or *["all"]* to test all models. 88 88 """ 89 ModelTestCase = _hide_model_case_from_nose() 89 90 suite = unittest.TestSuite() 90 91 … … 95 96 skip = [] 96 97 for model_name in models: 97 if model_name not in skip: 98 model_info = load_model_info(model_name) 99 _add_model_to_suite(loaders, suite, model_info) 98 if model_name in skip: 99 continue 100 model_info = load_model_info(model_name) 101 102 #print('------') 103 #print('found tests in', model_name) 104 #print('------') 105 106 # if ispy then use the dll loader to call pykernel 107 # don't try to call cl kernel since it will not be 108 # available in some environmentes. 109 is_py = callable(model_info.Iq) 110 111 # Some OpenCL drivers seem to be flaky, and are not producing the 112 # expected result. Since we don't have known test values yet for 113 # all of our models, we are instead going to compare the results 114 # for the 'smoke test' (that is, evaluation at q=0.1 for the default 115 # parameters just to see that the model runs to completion) between 116 # the OpenCL and the DLL. To do this, we define a 'stash' which is 117 # shared between OpenCL and DLL tests. This is just a list. If the 118 # list is empty (which it will be when DLL runs, if the DLL runs 119 # first), then the results are appended to the list. If the list 120 # is not empty (which it will be when OpenCL runs second), the results 121 # are compared to the results stored in the first element of the list. 122 # This is a horrible stateful hack which only makes sense because the 123 # test suite is thrown away after being run once. 124 stash = [] 125 126 if is_py: # kernel implemented in python 127 test_name = "%s-python"%model_name 128 test_method_name = "test_%s_python" % model_info.id 129 test = ModelTestCase(test_name, model_info, 130 test_method_name, 131 platform="dll", # so that 132 dtype="double", 133 stash=stash) 134 suite.addTest(test) 135 else: # kernel implemented in C 136 137 # test using dll if desired 138 if 'dll' in loaders: 139 test_name = "%s-dll"%model_name 140 test_method_name = "test_%s_dll" % model_info.id 141 test = ModelTestCase(test_name, model_info, 142 test_method_name, 143 platform="dll", 144 dtype="double", 145 stash=stash) 146 suite.addTest(test) 147 148 # test using opencl if desired and available 149 if 'opencl' in loaders and use_opencl(): 150 test_name = "%s-opencl"%model_name 151 test_method_name = "test_%s_opencl" % model_info.id 152 # Using dtype=None so that the models that are only 153 # correct for double precision are not tested using 154 # single precision. The choice is determined by the 155 # presence of *single=False* in the model file. 156 test = ModelTestCase(test_name, model_info, 157 test_method_name, 158 platform="ocl", dtype=None, 159 stash=stash) 160 #print("defining", test_name) 161 suite.addTest(test) 162 163 # test using cuda if desired and available 164 if 'cuda' in loaders and use_cuda(): 165 test_name = "%s-cuda"%model_name 166 test_method_name = "test_%s_cuda" % model_info.id 167 # Using dtype=None so that the models that are only 168 # correct for double precision are not tested using 169 # single precision. The choice is determined by the 170 # presence of *single=False* in the model file. 171 test = ModelTestCase(test_name, model_info, 172 test_method_name, 173 platform="cuda", dtype=None, 174 stash=stash) 175 #print("defining", test_name) 176 suite.addTest(test) 100 177 101 178 return suite 102 103 def _add_model_to_suite(loaders, suite, model_info):104 ModelTestCase = _hide_model_case_from_nose()105 106 #print('------')107 #print('found tests in', model_name)108 #print('------')109 110 # if ispy then use the dll loader to call pykernel111 # don't try to call cl kernel since it will not be112 # available in some environmentes.113 is_py = callable(model_info.Iq)114 115 # Some OpenCL drivers seem to be flaky, and are not producing the116 # expected result. Since we don't have known test values yet for117 # all of our models, we are instead going to compare the results118 # for the 'smoke test' (that is, evaluation at q=0.1 for the default119 # parameters just to see that the model runs to completion) between120 # the OpenCL and the DLL. To do this, we define a 'stash' which is121 # shared between OpenCL and DLL tests. This is just a list. If the122 # list is empty (which it will be when DLL runs, if the DLL runs123 # first), then the results are appended to the list. If the list124 # is not empty (which it will be when OpenCL runs second), the results125 # are compared to the results stored in the first element of the list.126 # This is a horrible stateful hack which only makes sense because the127 # test suite is thrown away after being run once.128 stash = []129 130 if is_py: # kernel implemented in python131 test_name = "%s-python"%model_info.name132 test_method_name = "test_%s_python" % model_info.id133 test = ModelTestCase(test_name, model_info,134 test_method_name,135 platform="dll", # so that136 dtype="double",137 stash=stash)138 suite.addTest(test)139 else: # kernel implemented in C140 141 # test using dll if desired142 if 'dll' in loaders or not use_opencl():143 test_name = "%s-dll"%model_info.name144 test_method_name = "test_%s_dll" % model_info.id145 test = ModelTestCase(test_name, model_info,146 test_method_name,147 platform="dll",148 dtype="double",149 stash=stash)150 suite.addTest(test)151 152 # test using opencl if desired and available153 if 'opencl' in loaders and use_opencl():154 test_name = "%s-opencl"%model_info.name155 test_method_name = "test_%s_opencl" % model_info.id156 # Using dtype=None so that the models that are only157 # correct for double precision are not tested using158 # single precision. The choice is determined by the159 # presence of *single=False* in the model file.160 test = ModelTestCase(test_name, model_info,161 test_method_name,162 platform="ocl", dtype=None,163 stash=stash)164 #print("defining", test_name)165 suite.addTest(test)166 167 # test using cuda if desired and available168 if 'cuda' in loaders and use_cuda():169 test_name = "%s-cuda"%model_name170 test_method_name = "test_%s_cuda" % model_info.id171 # Using dtype=None so that the models that are only172 # correct for double precision are not tested using173 # single precision. The choice is determined by the174 # presence of *single=False* in the model file.175 test = ModelTestCase(test_name, model_info,176 test_method_name,177 platform="cuda", dtype=None,178 stash=stash)179 #print("defining", test_name)180 suite.addTest(test)181 182 179 183 180 def _hide_model_case_from_nose(): … … 406 403 return abs(target-actual)/shift < 1.5*10**-digits 407 404 408 # CRUFT: old interface; should be deprecated and removed 409 def run_one(model_name): 410 # msg = "use check_model(model_info) rather than run_one(model_name)" 411 # warnings.warn(msg, category=DeprecationWarning, stacklevel=2) 412 try: 413 model_info = load_model_info(model_name) 414 except Exception: 415 output = traceback.format_exc() 416 return output 417 418 success, output = check_model(model_info) 419 return output 420 421 def check_model(model_info): 422 # type: (ModelInfo) -> str 423 """ 424 Run the tests for a single model, capturing the output. 425 426 Returns success status and the output string. 405 def run_one(model): 406 # type: (str) -> str 407 """ 408 Run the tests for a single model, printing the results to stdout. 409 410 *model* can by a python file, which is handy for checking user defined 411 plugin models. 427 412 """ 428 413 # Note that running main() directly did not work from within the … … 438 423 439 424 # Build a test suite containing just the model 440 loaders = ['opencl' if use_opencl() else 'cuda' if use_cuda() else 'dll'] 441 suite = unittest.TestSuite() 442 _add_model_to_suite(loaders, suite, model_info) 425 loader = 'opencl' if use_opencl() else 'cuda' if use_cuda() else 'dll' 426 models = [model] 427 try: 428 suite = make_suite([loader], models) 429 except Exception: 430 import traceback 431 stream.writeln(traceback.format_exc()) 432 return 443 433 444 434 # Warn if there are no user defined tests. … … 455 445 for test in suite: 456 446 if not test.info.tests: 457 stream.writeln("Note: %s has no user defined tests."%model _info.name)447 stream.writeln("Note: %s has no user defined tests."%model) 458 448 break 459 449 else: … … 471 461 output = stream.getvalue() 472 462 stream.close() 473 return result.wasSuccessful(),output463 return output 474 464 475 465 -
sasmodels/sasview_model.py
r39a06c9 r39a06c9 819 819 return value, [value], [1.0] 820 820 821 @classmethod822 def runTests(cls):823 """824 Run any tests built into the model and captures the test output.825 826 Returns success flag and output827 """828 from .model_test import check_model829 return check_model(cls._model_info)830 831 821 def test_cylinder(): 832 822 # type: () -> float -
sasmodels/special.py
rfba9ca0 rdf69efa 113 113 The standard math function, tgamma(x) is unstable for $x < 1$ 114 114 on some platforms. 115 116 sas_gammaln(x):117 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$.118 119 The standard math function, lgamma(x), is incorrect for single120 precision on some platforms.121 122 sas_gammainc(a, x), sas_gammaincc(a, x):123 Incomplete gamma function124 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$125 and complementary incomplete gamma function126 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$127 115 128 116 sas_erf(x), sas_erfc(x): … … 219 207 from numpy import pi, nan, inf 220 208 from scipy.special import gamma as sas_gamma 221 from scipy.special import gammaln as sas_gammaln222 from scipy.special import gammainc as sas_gammainc223 from scipy.special import gammaincc as sas_gammaincc224 209 from scipy.special import erf as sas_erf 225 210 from scipy.special import erfc as sas_erfc
Note: See TracChangeset
for help on using the changeset viewer.