- Timestamp:
- Jul 19, 2018 11:44:48 AM (6 years ago)
- Branches:
- master
- Children:
- 9ce5bcb
- Parents:
- 36873d1
- git-author:
- Steve K <smk78@…> (07/19/18 11:44:48)
- git-committer:
- GitHub <noreply@…> (07/19/18 11:44:48)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/pd/polydispersity.rst
r36873d1 r0e04dd7 59 59 * *Schulz Distribution* 60 60 * *Array Distribution* 61 * *User-defined Distributions* 61 62 62 63 These are all implemented as *number-average* distributions. 63 64 64 Additional distributions are under consideration.65 65 66 66 Suggested Applications … … 77 77 Lognormal) because angles can be negative! 78 78 79 The array distribution allows a user-defined distribution to be applied. 79 The array distribution provides a very simple means of implementing a user- 80 defined distribution, but without any fittable parameters. Greater flexibility 81 is conferred by the user-defined distribution. 80 82 81 83 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ … … 318 320 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 319 321 320 You can define your own distribution by creating a python file defining a322 You can also define your own distribution by creating a python file defining a 321 323 *Distribution* object with a *_weights* method. The *_weights* method takes 322 324 *center*, *sigma*, *lb* and *ub* as arguments, and can access *self.npts* … … 326 328 if it is an angular dispersity. This parameter may be fitted. 327 329 328 * *sigma* the width of the distribution, w ith is the polydispersity parameter330 * *sigma* the width of the distribution, which is the polydispersity parameter 329 331 times the center for size dispersity, or the polydispersity parameter alone 330 332 for angular dispersity. This parameter may be fitted. 331 333 332 * *lb*, *ub* are the parameter limits given in the model definition file. For333 example, a radius parameter has *lb* equal to zero. A volume fraction334 parameter would have *lb* equal to zero and *ub* equal to one.334 * *lb*, *ub* are the parameter limits (lower & upper bounds) given in the model 335 definition file. For example, a radius parameter has *lb* equal to zero. A 336 volume fraction parameter would have *lb* equal to zero and *ub* equal to one. 335 337 336 338 * *self.nsigmas* the distance to go into the tails when evaluating the … … 344 346 parameter in a three parameter distribution. 345 347 346 The code following wraps the Laplace distribution from scipy stats::348 As an example, the code following wraps the Laplace distribution from scipy stats:: 347 349 348 350 import numpy as np
Note: See TracChangeset
for help on using the changeset viewer.