Changes in / [da3638f:0d26e91] in sasmodels
- Location:
- sasmodels
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/compare.py
r4de14584 r4de14584 1152 1152 'rel_err' : True, 1153 1153 'explore' : False, 1154 'use_demo' : True,1154 'use_demo' : False, 1155 1155 'zero' : False, 1156 1156 'html' : False, -
sasmodels/direct_model.py
r5024a56 r5024a56 332 332 333 333 # Need to pull background out of resolution for multiple scattering 334 background = pars.get('background', DEFAULT_BACKGROUND) 334 default_background = self._model.info.parameters.common_parameters[1].default 335 background = pars.get('background', default_background) 335 336 pars = pars.copy() 336 337 pars['background'] = 0. -
sasmodels/generate.py
rcd28947 rcd28947 1006 1006 pars = model_info.parameters.kernel_parameters 1007 1007 else: 1008 pars = model_info.parameters.COMMON + model_info.parameters.kernel_parameters 1008 pars = (model_info.parameters.common_parameters 1009 + model_info.parameters.kernel_parameters) 1009 1010 partable = make_partable(pars) 1010 1011 subst = dict(id=model_info.id.replace('_', '-'), -
sasmodels/jitter.py
r1198f90 r7d97437 15 15 pass 16 16 17 import matplotlib as mpl 17 18 import matplotlib.pyplot as plt 18 19 from matplotlib.widgets import Slider … … 746 747 pass 747 748 748 axcolor = 'lightgoldenrodyellow' 749 # CRUFT: use axisbg instead of facecolor for matplotlib<2 750 facecolor_prop = 'facecolor' if mpl.__version__ > '2' else 'axisbg' 751 props = {facecolor_prop: 'lightgoldenrodyellow'} 749 752 750 753 ## add control widgets to plot 751 axes_theta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor)752 axes_phi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor)753 axes_psi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor)754 axes_theta = plt.axes([0.1, 0.15, 0.45, 0.04], **props) 755 axes_phi = plt.axes([0.1, 0.1, 0.45, 0.04], **props) 756 axes_psi = plt.axes([0.1, 0.05, 0.45, 0.04], **props) 754 757 stheta = Slider(axes_theta, 'Theta', -90, 90, valinit=theta) 755 758 sphi = Slider(axes_phi, 'Phi', -180, 180, valinit=phi) 756 759 spsi = Slider(axes_psi, 'Psi', -180, 180, valinit=psi) 757 760 758 axes_dtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor)759 axes_dphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor)760 axes_dpsi = plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor)761 axes_dtheta = plt.axes([0.75, 0.15, 0.15, 0.04], **props) 762 axes_dphi = plt.axes([0.75, 0.1, 0.15, 0.04], **props) 763 axes_dpsi = plt.axes([0.75, 0.05, 0.15, 0.04], **props) 761 764 # Note: using ridiculous definition of rectangle distribution, whose width 762 765 # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep -
sasmodels/kernelcl.py
r3199b17 r3199b17 58 58 import time 59 59 60 try: 61 from time import perf_counter as clock 62 except ImportError: # CRUFT: python < 3.3 63 import sys 64 if sys.platform.count("darwin") > 0: 65 from time import time as clock 66 else: 67 from time import clock 68 60 69 import numpy as np # type: ignore 61 62 70 63 71 # Attempt to setup OpenCL. This may fail if the pyopencl package is not … … 592 600 #call_details.show(values) 593 601 wait_for = None 594 last_nap = time.clock()602 last_nap = clock() 595 603 step = 1000000//self.q_input.nq + 1 596 604 for start in range(0, call_details.num_eval, step): … … 603 611 # Allow other processes to run. 604 612 wait_for[0].wait() 605 current_time = time.clock()613 current_time = clock() 606 614 if current_time - last_nap > 0.5: 607 615 time.sleep(0.001) -
sasmodels/modelinfo.py
r39a06c9 r39a06c9 404 404 parameters counted as n individual parameters p1, p2, ... 405 405 406 * *common_parameters* is the list of common parameters, with a unique 407 copy for each model so that structure factors can have a default 408 background of 0.0. 409 406 410 * *call_parameters* is the complete list of parameters to the kernel, 407 411 including scale and background, with vector parameters recorded as … … 416 420 parameters don't use vector notation, and instead use p1, p2, ... 417 421 """ 418 # scale and background are implicit parameters419 COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]420 421 422 def __init__(self, parameters): 422 423 # type: (List[Parameter]) -> None 424 425 # scale and background are implicit parameters 426 # Need them to be unique to each model in case they have different 427 # properties, such as default=0.0 for structure factor backgrounds. 428 self.common_parameters = [Parameter(*p) for p in COMMON_PARAMETERS] 429 423 430 self.kernel_parameters = parameters 424 431 self._set_vector_lengths() … … 468 475 if p.polydisperse and p.type not in ('orientation', 'magnetic')) 469 476 self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse) 477 478 def set_zero_background(self): 479 """ 480 Set the default background to zero for this model. This is done for 481 structure factor models. 482 """ 483 # type: () -> None 484 # Make sure background is the second common parameter. 485 assert self.common_parameters[1].id == "background" 486 self.common_parameters[1].default = 0.0 487 self.defaults = self._get_defaults() 470 488 471 489 def check_angles(self): … … 567 585 def _get_call_parameters(self): 568 586 # type: () -> List[Parameter] 569 full_list = self. COMMON[:]587 full_list = self.common_parameters[:] 570 588 for p in self.kernel_parameters: 571 589 if p.length == 1: … … 670 688 671 689 # Gather the user parameters in order 672 result = control + self. COMMON690 result = control + self.common_parameters 673 691 for p in self.kernel_parameters: 674 692 if not is2d and p.type in ('orientation', 'magnetic'): … … 770 788 771 789 info = ModelInfo() 790 791 # Build the parameter table 772 792 #print("make parameter table", kernel_module.parameters) 773 793 parameters = make_parameter_table(getattr(kernel_module, 'parameters', [])) 794 795 # background defaults to zero for structure factor models 796 structure_factor = getattr(kernel_module, 'structure_factor', False) 797 if structure_factor: 798 parameters.set_zero_background() 799 800 # TODO: remove demo parameters 801 # The plots in the docs are generated from the model default values. 802 # Sascomp set parameters from the command line, and so doesn't need 803 # demo values for testing. 774 804 demo = expand_pars(parameters, getattr(kernel_module, 'demo', None)) 805 775 806 filename = abspath(kernel_module.__file__).replace('.pyc', '.py') 776 807 kernel_id = splitext(basename(filename))[0] -
sasmodels/models/hardsphere.py
r304c775 r304c775 162 162 return pars 163 163 164 demo = dict(radius_effective=200, volfraction=0.2,165 radius_effective_pd=0.1, radius_effective_pd_n=40)166 164 # Q=0.001 is in the Taylor series, low Q part, so add Q=0.1, 167 165 # assuming double precision sasview is correct -
sasmodels/resolution.py
rda3638f rda3638f 445 445 q = np.sort(q) 446 446 if q_min + 2*MINIMUM_RESOLUTION < q[0]: 447 n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15448 q_low = np.linspace(q_min, q[0], int(n_low)+1)[:-1]447 n_low = int(np.ceil((q[0]-q_min) / (q[1]-q[0]))) if q[1] > q[0] else 15 448 q_low = np.linspace(q_min, q[0], n_low+1)[:-1] 449 449 else: 450 450 q_low = [] 451 451 if q_max - 2*MINIMUM_RESOLUTION > q[-1]: 452 n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15453 q_high = np.linspace(q[-1], q_max, int(n_high)+1)[1:]452 n_high = int(np.ceil((q_max-q[-1]) / (q[-1]-q[-2]))) if q[-1] > q[-2] else 15 453 q_high = np.linspace(q[-1], q_max, n_high+1)[1:] 454 454 else: 455 455 q_high = [] … … 498 498 if q_min < 0: 499 499 q_min = q[0]*MINIMUM_ABSOLUTE_Q 500 n_low = np.ceil(log_delta_q * (log(q[0])-log(q_min)))501 q_low = np.logspace(log10(q_min), log10(q[0]), int(n_low)+1)[:-1]500 n_low = int(np.ceil(log_delta_q * (log(q[0])-log(q_min)))) 501 q_low = np.logspace(log10(q_min), log10(q[0]), n_low+1)[:-1] 502 502 else: 503 503 q_low = [] 504 504 if q_max > q[-1]: 505 n_high = np.ceil(log_delta_q * (log(q_max)-log(q[-1])))506 q_high = np.logspace(log10(q[-1]), log10(q_max), int(n_high)+1)[1:]505 n_high = int(np.ceil(log_delta_q * (log(q_max)-log(q[-1])))) 506 q_high = np.logspace(log10(q[-1]), log10(q_max), n_high+1)[1:] 507 507 else: 508 508 q_high = [] -
sasmodels/sasview_model.py
r3a1afed r3a1afed 382 382 hidden.add('scale') 383 383 hidden.add('background') 384 self._model_info.parameters.defaults['background'] = 0.385 384 386 385 # Update the parameter lists to exclude any hidden parameters … … 931 930 CylinderModel().evalDistribution([0.1, 0.1]) 932 931 932 def test_structure_factor_background(): 933 # type: () -> None 934 """ 935 Check that sasview model and direct model match, with background=0. 936 """ 937 from .data import empty_data1D 938 from .core import load_model_info, build_model 939 from .direct_model import DirectModel 940 941 model_name = "hardsphere" 942 q = [0.0] 943 944 sasview_model = _make_standard_model(model_name)() 945 sasview_value = sasview_model.evalDistribution(np.array(q))[0] 946 947 data = empty_data1D(q) 948 model_info = load_model_info(model_name) 949 model = build_model(model_info) 950 direct_model = DirectModel(data, model) 951 direct_value_zero_background = direct_model(background=0.0) 952 953 assert sasview_value == direct_value_zero_background 954 955 # Additionally check that direct value background defaults to zero 956 direct_value_default = direct_model() 957 assert sasview_value == direct_value_default 958 959 933 960 def magnetic_demo(): 934 961 Model = _make_standard_model('sphere') … … 951 978 #print("rpa:", test_rpa()) 952 979 #test_empty_distribution() 980 #test_structure_factor_background() -
sasmodels/weights.py
r3d58247 re2592f0 23 23 default = dict(npts=35, width=0, nsigmas=3) 24 24 def __init__(self, npts=None, width=None, nsigmas=None): 25 self.npts = self.default['npts'] if npts is None else npts25 self.npts = self.default['npts'] if npts is None else int(npts) 26 26 self.width = self.default['width'] if width is None else width 27 27 self.nsigmas = self.default['nsigmas'] if nsigmas is None else nsigmas
Note: See TracChangeset
for help on using the changeset viewer.