Changes in sasmodels/models/triaxial_ellipsoid.py [9b79f29:0881f4e] in sasmodels
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/triaxial_ellipsoid.py
r9b79f29 r0881f4e 16 16 \frac{X^2}{R_a^2} + \frac{Y^2}{R_b^2} + \frac{Z^2}{R_c^2} = 1 17 17 18 the scattering for randomly oriented particles is defined by the average over all orientations $\Omega$ of: 18 the scattering for randomly oriented particles is defined by the average over 19 all orientations $\Omega$ of: 19 20 20 21 .. math:: 21 22 22 P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega \Phi^2(qr) d\Omega + \text{background} 23 P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega\Phi^2(qr)\,d\Omega 24 + \text{background} 23 25 24 26 where … … 38 40 .. math:: 39 41 40 \langle\Phi^2\rangle = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \Phi^2(qr) \cos \gamma\,d\gamma d\phi 42 \langle\Phi^2\rangle = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \Phi^2(qr) 43 \cos \gamma\,d\gamma d\phi 41 44 42 45 with $e = \cos\gamma \sin\phi$, $f = \cos\gamma \cos\phi$ and $g = \sin\gamma$. … … 69 72 .. figure:: img/elliptical_cylinder_angle_definition.png 70 73 71 Definition of angles for oriented triaxial ellipsoid, where radii shown here are $a < b << c$ 72 and angle $\Psi$ is a rotation around the axis of the particle. 74 Definition of angles for oriented triaxial ellipsoid, where radii shown 75 here are $a < b << c$ and angle $\Psi$ is a rotation around the axis 76 of the particle. 73 77 74 78 The angle $\psi$ is the rotational angle around its own $c$ axis … … 114 118 * **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017 115 119 * **Last Reviewed by:** Paul Kienzle & Richard Heenan **Date:** April 4, 2017 116 117 120 """ 118 121 … … 122 125 title = "Ellipsoid of uniform scattering length density with three independent axes." 123 126 124 description = """ \127 description = """ 125 128 Note: During fitting ensure that the inequality ra<rb<rc is not 126 129 violated. Otherwise the calculation will … … 140 143 ["radius_polar", "Ang", 10, [0, inf], "volume", 141 144 "Polar radius, Rc"], 142 ["theta", "degrees", 60, [- 360, 360], "orientation",143 " polar axis to beamangle"],144 ["phi", "degrees", 60, [- 360, 360], "orientation",145 " rotation about beam"],146 ["psi", "degrees", 60, [- 360, 360], "orientation",147 " rotation about polar axis"],145 ["theta", "degrees", 60, [-inf, inf], "orientation", 146 "In plane angle"], 147 ["phi", "degrees", 60, [-inf, inf], "orientation", 148 "Out of plane angle"], 149 ["psi", "degrees", 60, [-inf, inf], "orientation", 150 "Out of plane angle"], 148 151 ] 149 152 … … 157 160 from .ellipsoid import ER as ellipsoid_ER 158 161 159 # now that radii can be in any size order, radii need sorting a,b,c where a~b and c is either much smaller160 # or much larger162 # now that radii can be in any size order, radii need sorting a,b,c 163 # where a~b and c is either much smaller or much larger 161 164 radii = np.vstack((radius_equat_major, radius_equat_minor, radius_polar)) 162 165 radii = np.sort(radii, axis=0) … … 178 181 179 182 q = 0.1 180 # april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 183 # april 6 2017, rkh add unit tests 184 # NOT compared with any other calc method, assume correct! 181 185 # add 2d test after pull #890 182 186 qx = q*cos(pi/6.0)
Note: See TracChangeset
for help on using the changeset viewer.