Changes in / [e2b2473:0794ce3] in sasview
- Location:
- src/sas
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/corfunc/corfunc_calculator.py
rff11b21 rc728295 34 34 35 35 def __call__(self, x): 36 if self._lastx == [] or x.tolist() != self._lastx.tolist(): 36 # If input is a single number, evaluate the function at that number 37 # and return a single number 38 if type(x) == float or type(x) == int: 39 return self._smoothed_function(np.array([x]))[0] 40 # If input is a list, and is different to the last input, evaluate 41 # the function at each point. If the input is the same as last time 42 # the function was called, return the result that was calculated 43 # last time instead of explicity evaluating the function again. 44 elif self._lastx == [] or x.tolist() != self._lastx.tolist(): 37 45 self._lasty = self._smoothed_function(x) 38 46 self._lastx = x … … 121 129 extrapolation = Data1D(qs, iqs) 122 130 123 return params, extrapolation 131 return params, extrapolation, s2 124 132 125 133 def compute_transform(self, extrapolation, trans_type, background=None, … … 131 139 :param background: The background value (if not provided, previously 132 140 calculated value will be used) 141 :param extrap_fn: A callable function representing the extraoplated data 133 142 :param completefn: The function to call when the transform calculation 134 143 is complete` … … 144 153 if trans_type == 'fourier': 145 154 self._transform_thread = FourierThread(self._data, extrapolation, 146 background, completefn=completefn, updatefn=updatefn) 155 background, completefn=completefn, 156 updatefn=updatefn) 147 157 elif trans_type == 'hilbert': 148 158 self._transform_thread = HilbertThread(self._data, extrapolation, -
src/sas/sascalc/corfunc/transform_thread.py
rd03228e ra309667 2 2 from sas.sascalc.dataloader.data_info import Data1D 3 3 from scipy.fftpack import dct 4 from scipy.integrate import trapz 4 5 import numpy as np 5 6 from time import sleep … … 13 14 self.extrapolation = extrapolated_data 14 15 16 def check_if_cancelled(self): 17 if self.isquit(): 18 self.update("Fourier transform cancelled.") 19 self.complete(transforms=None) 20 return True 21 return False 22 15 23 def compute(self): 16 24 qs = self.extrapolation.x … … 19 27 background = self.background 20 28 29 xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 30 21 31 self.ready(delay=0.0) 22 self.update(msg=" Starting Fourier transform.")32 self.update(msg="Fourier transform in progress.") 23 33 self.ready(delay=0.0) 24 if self.isquit(): 25 34 35 if self.check_if_cancelled(): return 26 36 try: 27 gamma = dct((iqs-background)*qs**2) 28 gamma = gamma / gamma.max() 29 except: 37 # ----- 1D Correlation Function ----- 38 gamma1 = dct((iqs-background)*qs**2) 39 Q = gamma1.max() 40 gamma1 /= Q 41 42 if self.check_if_cancelled(): return 43 44 # ----- 3D Correlation Function ----- 45 # gamma3(R) = 1/R int_{0}^{R} gamma1(x) dx 46 # trapz uses the trapezium rule to calculate the integral 47 mask = xs <= 200.0 # Only calculate gamma3 up to x=200 (as this is all that's plotted) 48 gamma3 = [trapz(gamma1[:n], xs[:n])/xs[n-1] for n in range(2, len(xs[mask]) + 1)] 49 gamma3.insert(0, 1.0) # Gamma_3(0) is defined as 1 50 gamma3 = np.array(gamma3) 51 52 if self.check_if_cancelled(): return 53 54 # ----- Interface Distribution function ----- 55 idf = dct(-qs**4 * (iqs-background)) 56 57 if self.check_if_cancelled(): return 58 59 # Manually calculate IDF(0.0), since scipy DCT tends to give us a 60 # very large negative value. 61 # IDF(x) = int_0^inf q^4 * I(q) * cos(q*x) * dq 62 # => IDF(0) = int_0^inf q^4 * I(q) * dq 63 idf[0] = trapz(-qs**4 * (iqs-background), qs) 64 idf /= Q # Normalise using scattering invariant 65 66 except Exception as e: 67 import logging 68 logger = logging.getLogger(__name__) 69 logger.error(e) 70 30 71 self.update(msg="Fourier transform failed.") 31 self.complete(transform =None)72 self.complete(transforms=None) 32 73 return 33 74 if self.isquit(): … … 35 76 self.update(msg="Fourier transform completed.") 36 77 37 xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 38 transform = Data1D(xs, gamma) 78 transform1 = Data1D(xs, gamma1) 79 transform3 = Data1D(xs[xs <= 200], gamma3) 80 idf = Data1D(xs, idf) 39 81 40 self.complete(transform=transform) 82 transforms = (transform1, transform3, idf) 83 84 self.complete(transforms=transforms) 41 85 42 86 class HilbertThread(CalcThread): … … 64 108 self.update(msg="Hilbert transform completed.") 65 109 66 self.complete(transform =None)110 self.complete(transforms=None) -
src/sas/sasgui/perspectives/corfunc/corfunc.py
r463e7ffc r9b90bf8 189 189 # Show the transformation as a curve instead of points 190 190 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 elif label == IDF_LABEL: 192 new_plot.xaxis("{x}", 'A') 193 new_plot.yaxis("{g_1}", '') 194 # Linear scale 195 new_plot.xtransform = 'x' 196 new_plot.ytransform = 'y' 197 group_id = GROUP_ID_IDF 198 # Show IDF as a curve instead of points 199 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 200 new_plot.id = label 192 201 new_plot.name = label -
src/sas/sasgui/perspectives/corfunc/corfunc_panel.py
r7432acb r9b90bf8 55 55 self._data = data # The data to be analysed (corrected fr background) 56 56 self._extrapolated_data = None # The extrapolated data set 57 # Callable object of class CorfuncCalculator._Interpolator representing 58 # the extrapolated and interpolated data 59 self._extrapolated_fn = None 57 60 self._transformed_data = None # Fourier trans. of the extrapolated data 58 61 self._calculator = CorfuncCalculator() … … 218 221 219 222 try: 220 params, self._extrapolated_data = self._calculator.compute_extrapolation() 223 params, self._extrapolated_data, self._extrapolated_fn = \ 224 self._calculator.compute_extrapolation() 221 225 except Exception as e: 222 226 msg = "Error extrapolating data:\n" … … 257 261 StatusEvent(status=msg)) 258 262 259 def transform_complete(self, transform =None):263 def transform_complete(self, transforms=None): 260 264 """ 261 265 Called from FourierThread when calculation has completed 262 266 """ 263 267 self._transform_btn.SetLabel("Transform") 264 if transform is None:268 if transforms is None: 265 269 msg = "Error calculating Transform." 266 270 if self.transform_type == 'hilbert': … … 270 274 self._extract_btn.Disable() 271 275 return 272 self._transformed_data = transform 273 import numpy as np 274 plot_x = transform.x[np.where(transform.x <= 200)] 275 plot_y = transform.y[np.where(transform.x <= 200)] 276 277 self._transformed_data = transforms 278 (transform1, transform3, idf) = transforms 279 plot_x = transform1.x[transform1.x <= 200] 280 plot_y = transform1.y[transform1.x <= 200] 276 281 self._manager.show_data(Data1D(plot_x, plot_y), TRANSFORM_LABEL1) 282 # No need to shorten gamma3 as it's only calculated up to x=200 283 self._manager.show_data(transform3, TRANSFORM_LABEL3) 284 285 plot_x = idf.x[idf.x <= 200] 286 plot_y = idf.y[idf.x <= 200] 287 self._manager.show_data(Data1D(plot_x, plot_y), IDF_LABEL) 288 277 289 # Only enable extract params button if a fourier trans. has been done 278 290 if self.transform_type == 'fourier': … … 286 298 """ 287 299 try: 288 params = self._calculator.extract_parameters(self._transformed_data )300 params = self._calculator.extract_parameters(self._transformed_data[0]) 289 301 except: 290 302 params = None -
src/sas/sasgui/perspectives/corfunc/corfunc_state.py
r7432acb r457f735 59 59 self.q = None 60 60 self.iq = None 61 # TODO: Add extrapolated data and transformed data (when implemented)62 61 63 62 def __str__(self): -
src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst
r1404cce rd78b5cb 10 10 11 11 This performs a correlation function analysis of one-dimensional 12 SAXS/SANS data, or generates a model-independent volume fraction 12 SAXS/SANS data, or generates a model-independent volume fraction 13 13 profile from the SANS from an adsorbed polymer/surfactant layer. 14 14 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 19 19 manifests itself as a peak. 20 20 … … 30 30 * Fourier / Hilbert Transform of the smoothed data to give the correlation 31 31 function / volume fraction profile, respectively 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 33 33 lamellar morphology 34 34 … … 74 74 :align: center 75 75 76 76 77 77 Smoothing 78 78 --------- 79 79 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 81 81 up to the lowest Q value in the original data, then the original scattering data, and the Porod tail-fit beyond this. The joins between the original data and the Guinier/Porod fits are smoothed using the algorithm below to avoid the formation of ripples in the transformed data. 82 82 … … 93 93 h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}} 94 94 95 95 96 96 Transform 97 97 --------- … … 102 102 If "Fourier" is selected for the transform type, the analysis will perform a 103 103 discrete cosine transform on the extrapolated data in order to calculate the 104 correlation function 104 1D correlation function: 105 105 106 106 .. math:: … … 115 115 \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots, 116 116 N-1, N 117 118 The 3D correlation function is also calculated: 119 120 .. math:: 121 \Gamma _{3D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2} 122 \frac{sin(qR)}{qR} dq 117 123 118 124 Hilbert … … 165 171 .. figure:: profile1.png 166 172 :align: center 167 173 168 174 .. figure:: profile2.png 169 175 :align: center 170 176 171 177 172 178 References … … 191 197 ----- 192 198 Upon sending data for correlation function analysis, it will be plotted (minus 193 the background value), along with a *red* bar indicating the *upper end of the 199 the background value), along with a *red* bar indicating the *upper end of the 194 200 low-Q range* (used for back-extrapolation), and 2 *purple* bars indicating the range to be used for forward-extrapolation. These bars may be moved my clicking and 195 201 dragging, or by entering appropriate values in the Q range input boxes. … … 221 227 :align: center 222 228 223 229 224 230 .. note:: 225 231 This help document was last changed by Steve King, 08Oct2016 -
src/sas/sasgui/perspectives/corfunc/plot_labels.py
r1dc8ec9 r7dda833 4 4 5 5 GROUP_ID_TRANSFORM = r"$\Gamma(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma3(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma_1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma_3(x)$" 8 9 GROUP_ID_IDF = r"$g_1(x)$" 10 IDF_LABEL = r"$g_1(x)$"
Note: See TracChangeset
for help on using the changeset viewer.