Changes in / [727c05f:02b01877] in sasview


Ignore:
Location:
src/sas/sasgui/perspectives/invariant/media
Files:
4 added
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/invariant/media/invariant_help.rst

    r094b9eb r6aad2e8  
    1010----------- 
    1111 
    12 The scattering, or Porod, invariant ($Q^*$) is a model-independent quantity that 
     12The scattering, or Porod, invariant (Q*\) is a model-independent quantity that  
    1313can be easily calculated from scattering data. 
    1414 
    15 For two phase systems, the scattering invariant is defined as the integral of 
    16 the square of the wavevector transfer ($Q$) multiplied by the scattering cross section 
    17 over the full range of $Q$ from zero to infinity, that is 
     15For two phase systems, the scattering invariant is defined as the integral of  
     16the square of the wave transfer (Q) multiplied by the scattering cross section  
     17over the full range of Q from zero to infinity, that is 
    1818 
    19 .. math:: 
     19.. image:: image001.png 
    2020 
    21     Q^* = \int_0^\infty q^2I(q)\,dq 
     21where *g = q* for pinhole geometry (SAS) and *g = q*\ :sub:`v` (the slit height) for   
     22slit geometry (USAS). 
    2223 
    23 in the case of pinhole geometry. For slit geometry the invariant is given by 
    24  
    25 .. math:: 
    26  
    27     Q^* = \Delta q_v \int_0^\infty qI(q)\,dq 
    28  
    29 where $\Delta q_v$ is the slit height. 
    30  
    31 The worth of $Q^*$  is that it can be used to determine the volume fraction and 
    32 the specific area of a sample. Whilst these quantities are useful in their own 
     24The worth of Q*\  is that it can be used to determine the volume fraction and  
     25the specific area of a sample. Whilst these quantities are useful in their own  
    3326right they can also be used in further analysis. 
    3427 
    35 The difficulty with using $Q^*$  arises from the fact that experimental data is 
    36 never measured over the range $0 \le Q \le \infty$. At best, combining USAS and 
    37 WAS data might cover the range $10^{-5} \le Q \le 10$ 1/\ |Ang| . Thus it is usually 
    38 necessary to extrapolate the experimental data to low and high $Q$. For this 
     28The difficulty with using Q*\  arises from the fact that experimental data is  
     29never measured over the range 0 =< *Q* =< infinity. At best, combining USAS and  
     30WAS data might cover the range 1e-5 =< *Q* =< 10 1/\ |Ang| . Thus it is usually  
     31necessary to extrapolate the experimental data to low and high *Q*. For this 
    3932 
    40 High-\ $Q$ region (>= *Qmax* in data) 
     33High-*Q* region (>= *Qmax* in data) 
    4134 
    42 *  The power law function $C/Q^4$ is used where the constant 
    43    $C = 2 \pi \Delta\rho S_v$ is to be found by fitting part of data 
    44    within the range $Q_{N-m}$ to $Q_N$ (where $m < N$). 
     35*  The power law function *C*/*Q*\ :sup:`4` is used where the constant  
     36   *C* (= 2.\ |pi|\ .(\ |bigdelta|\ |rho|\ ).\ *Sv*\ ) is to be found by fitting part of data  
     37   within the range *Q*\ :sub:`N-m` to *Q*\ :sub:`N` (where m < N). 
    4538 
    46 Low-\ $Q$ region (<= *Qmin* in data) 
     39Low-*Q* region (<= *Qmin* in data) 
    4740 
    48 *  The Guinier function $I_0 exp(-R_g^2 Q^2/3)$ where $I_0$ 
    49    and $R_g$ are obtained by fitting as for the high-\ $Q$ region above. 
     41*  The Guinier function *I0.exp(-Rg*\ :sup:`2`\ *Q*\ :sup:`2`\ */3)* where *I0*  
     42   and *Rg* are obtained by fitting as for the high-*Q* region above.  
    5043   Alternatively a power law can be used. 
    5144 
     
    59522) Load some data with the *Data Explorer*. 
    6053 
    61 3) Select a dataset and use the *Send To* button on the *Data Explorer* to load 
     543) Select a dataset and use the *Send To* button on the *Data Explorer* to load  
    6255   the dataset into the *Invariant* panel. 
    6356 
    64 4) Use the *Customised Input* boxes on the *Invariant* panel to subtract 
    65    any background, specify the contrast (i.e. difference in SLDs - this must be 
    66    specified for the eventual value of $Q^*$  to be on an absolute scale), or to 
     574) Use the *Customised Input* boxes on the *Invariant* panel to subtract  
     58   any background, specify the contrast (i.e. difference in SLDs - this must be  
     59   specified for the eventual value of Q*\  to be on an absolute scale), or to  
    6760   rescale the data. 
    6861 
    69 5) Adjust the extrapolation range as necessary. In most cases the default 
     625) Adjust the extrapolation range as necessary. In most cases the default  
    7063   values will suffice. 
    7164 
    72656) Click the *Compute* button. 
    7366 
    74 7) To include a lower and/or higher $Q$ range, check the relevant *Enable 
     677) To include a lower and/or higher Q range, check the relevant *Enable  
    7568   Extrapolate* check boxes. 
    76  
    77    If power law extrapolations are chosen, the exponent can be either held 
    78    fixed or fitted. The number of points, Npts, to be used for the basis of the 
     69    
     70   If power law extrapolations are chosen, the exponent can be either held  
     71   fixed or fitted. The number of points, Npts, to be used for the basis of the  
    7972   extrapolation can also be specified. 
    8073 
    81 8) If the value of $Q^*$  calculated with the extrapolated regions is invalid, a 
     748) If the value of Q*\  calculated with the extrapolated regions is invalid, a  
    8275   red warning will appear at the top of the *Invariant* panel. 
    8376 
    84    The details of the calculation are available by clicking the *Details* 
     77   The details of the calculation are available by clicking the *Details*  
    8578   button in the middle of the panel. 
    8679 
     
    9588^^^^^^^^^^^^^^^ 
    9689 
    97 The volume fraction $\phi$ is related to $Q^*$  by 
     90The volume fraction |phi| is related to Q*\  by 
    9891 
    99 .. math:: 
     92.. image:: image002.png 
    10093 
    101     \phi(1 - \phi) = \frac{Q^*}{2\pi^2(\Delta\rho)^2} \equiv A 
     94where |bigdelta|\ |rho| is the SLD contrast. 
    10295 
    103 where $\Delta\rho$ is the SLD contrast. 
    104  
    105 .. math:: 
    106  
    107     \phi = \frac{1 \pm \sqrt{1 - 4A}}{2} 
     96.. image:: image003.png 
    10897 
    10998.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     
    112101^^^^^^^^^^^^^^^^^^^^^ 
    113102 
    114 The specific surface area $S_v$ is related to $Q^*$  by 
     103The specific surface area *Sv* is related to Q*\  by 
    115104 
    116 .. math:: 
     105.. image:: image004.png 
    117106 
    118     S_v = \frac{2\pi\phi(1-\phi)C_p}{Q^*} = \frac{2\pi A C_p}{Q^*} 
    119  
    120 where $C_p$ is the Porod constant. 
     107where *Cp* is the Porod constant. 
    121108 
    122109.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
Note: See TracChangeset for help on using the changeset viewer.