[aa639ea] | 1 | /** \file points_model.cc */ |
---|
| 2 | |
---|
| 3 | #include <vector> |
---|
| 4 | #include <algorithm> |
---|
| 5 | #include <fstream> |
---|
| 6 | #include <stdio.h> |
---|
| 7 | //#include <exception> |
---|
| 8 | #include <stdexcept> |
---|
| 9 | #include "points_model.h" |
---|
| 10 | #include "Point3D.h" |
---|
| 11 | |
---|
| 12 | PointsModel::PointsModel() |
---|
| 13 | { |
---|
| 14 | r_grids_num_ = 2000; |
---|
| 15 | rmax_ = 0; |
---|
| 16 | cormax_ = 0; |
---|
| 17 | rstep_ = 0; |
---|
| 18 | } |
---|
| 19 | |
---|
| 20 | void PointsModel::CalculateIQ(IQ *iq) |
---|
| 21 | { |
---|
| 22 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
| 23 | int nIpoints = iq->GetNumI(); |
---|
| 24 | double qstep = (iq->GetQmax()) / (nIpoints-1); |
---|
| 25 | vector<double> fint(nIpoints, 0); |
---|
| 26 | |
---|
| 27 | //I(0) is calculated seperately |
---|
| 28 | int num_rstep = pr_.dim1(); |
---|
| 29 | |
---|
| 30 | for (int k = 1; k<nIpoints; k++){ |
---|
| 31 | |
---|
| 32 | double q = k * qstep; |
---|
| 33 | |
---|
| 34 | double r =0; |
---|
| 35 | double debeye = 0; |
---|
| 36 | double fadd =0; |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | for (int i = 1; i < num_rstep; ++i){ |
---|
| 40 | r = i*rstep_; //r should start from 1* rstep |
---|
| 41 | double qr = q*r; |
---|
| 42 | debeye = sin(qr)/qr; |
---|
| 43 | fadd = pr_[i][1]*debeye; |
---|
| 44 | fint[k] = fint[k] + fadd; |
---|
| 45 | } |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | //I(0) |
---|
| 49 | double Izero = 0; |
---|
| 50 | for (int i = 0; i < num_rstep; ++i) |
---|
| 51 | Izero += pr_[i][1]; |
---|
| 52 | fint[0] = Izero; |
---|
| 53 | |
---|
| 54 | //assign I(Q) with normalization |
---|
| 55 | for(int j = 0; j < nIpoints; ++j){ |
---|
| 56 | (*iq).iq_data[j][0] = j * qstep; |
---|
| 57 | (*iq).iq_data[j][1] = fint[j]; |
---|
| 58 | // remove normalization Izero; |
---|
| 59 | } |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | //return I with a single q value |
---|
| 63 | double PointsModel::CalculateIQ(double q) |
---|
| 64 | { |
---|
| 65 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
| 66 | int num_rstep = pr_.dim1(); |
---|
| 67 | |
---|
| 68 | double r =0; |
---|
| 69 | double debeye = 0; |
---|
| 70 | double fadd = 0; |
---|
| 71 | double Irelative = 0; |
---|
| 72 | |
---|
| 73 | //I(0) is calculated seperately |
---|
| 74 | if (q == 0){ |
---|
| 75 | //I(0) |
---|
| 76 | double Izero = 0; |
---|
| 77 | for (int i = 0; i < num_rstep; ++i) |
---|
| 78 | Izero += pr_[i][1]; |
---|
| 79 | Irelative = Izero; |
---|
| 80 | } |
---|
| 81 | else { |
---|
| 82 | for (int i = 1; i < num_rstep; ++i){ |
---|
| 83 | r = i*rstep_; //r should start from 1* rstep |
---|
| 84 | double qr = q*r; |
---|
| 85 | debeye = sin(qr)/qr; |
---|
| 86 | fadd = pr_[i][1]*debeye; |
---|
| 87 | Irelative = Irelative + fadd; |
---|
| 88 | } |
---|
| 89 | } |
---|
| 90 | return Irelative; |
---|
| 91 | } |
---|
| 92 | |
---|
| 93 | double PointsModel::CalculateIQError(double q) |
---|
| 94 | { |
---|
| 95 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
| 96 | int num_rstep = pr_.dim1(); |
---|
| 97 | |
---|
| 98 | double r =0; |
---|
| 99 | double debeye = 0; |
---|
| 100 | double fadd = 0; |
---|
| 101 | double Irelative = 0; |
---|
| 102 | |
---|
| 103 | //I(0) is calculated seperately |
---|
| 104 | for (int i = 1; i < num_rstep; ++i){ |
---|
| 105 | r = i*rstep_; //r should start from 1* rstep |
---|
| 106 | double qr = q*r; |
---|
| 107 | debeye = sin(qr)/qr; |
---|
| 108 | fadd = fabs(pr_[i][2])*debeye*debeye |
---|
| 109 | + rstep_*rstep_/4.0/r/r*(cos(qr)*cos(qr) + debeye*debeye); |
---|
| 110 | Irelative = Irelative + fadd; |
---|
| 111 | } |
---|
| 112 | return sqrt(Irelative); |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | //pass in a vector of points, and calculate the P(r) |
---|
| 116 | double PointsModel::DistDistribution(const vector<Point3D> &vp) |
---|
| 117 | { |
---|
| 118 | //get r axis:0,rstep,2rstep,3rstep......d_bound |
---|
| 119 | int sizeofpr = r_grids_num_ + 1; //+1 just for overflow prevention |
---|
| 120 | |
---|
| 121 | double d_bound = GetDimBound(); |
---|
| 122 | rstep_ = CalculateRstep(r_grids_num_,d_bound); |
---|
| 123 | |
---|
| 124 | Array2D<double> pr(sizeofpr, 3); //third column is left for error for the future |
---|
| 125 | pr = 0; |
---|
| 126 | |
---|
| 127 | for (int i = 1; i != sizeofpr; ++i) |
---|
| 128 | pr[i][0] = pr[i-1][0] + rstep_ ; //column 1: distance |
---|
| 129 | |
---|
| 130 | int size = vp.size(); |
---|
| 131 | |
---|
| 132 | for (int i1 = 0; i1 < size - 1; ++i1) { |
---|
| 133 | for (int i2 = i1 + 1; i2 < size; ++i2) { |
---|
| 134 | //dist_.push_back(vp[i1].distanceToPoint(vp[i2])); |
---|
| 135 | //product_sld_.push_back(vp[i1].getSLD() * vp[i2].getSLD()); |
---|
| 136 | double a_dist = vp[i1].distanceToPoint(vp[i2]); |
---|
| 137 | double its_sld = vp[i1].getSLD() * vp[i2].getSLD(); |
---|
| 138 | |
---|
| 139 | //save maximum distance |
---|
| 140 | if (a_dist>rmax_) { |
---|
| 141 | rmax_ = a_dist; |
---|
| 142 | } |
---|
| 143 | //insert into pr array |
---|
| 144 | int l = int(floor(a_dist/rstep_)); |
---|
| 145 | |
---|
| 146 | //cout << "i1,i2,l,a_dist"<<vp[i1]<<" "<<vp[i2]<<" "<<l<<" "<<a_dist<<endl; |
---|
| 147 | //overflow check |
---|
| 148 | if (l >= sizeofpr) { |
---|
| 149 | cerr << "one distance is out of range: " << l <<endl; |
---|
| 150 | //throw "Out of range"; |
---|
| 151 | } |
---|
| 152 | else { |
---|
| 153 | pr[l][1] += its_sld; //column 2 intermediate: sum of SLD of the points with specific distance |
---|
| 154 | // Estimate uncertainty (squared) |
---|
| 155 | pr[l][2] += its_sld*its_sld; |
---|
| 156 | //keep maxium Pr absolute number, in order to normalize |
---|
| 157 | //if (pr[l][1] > cormax_) cormax_ = pr[l][1]; |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | //normalize Pr |
---|
| 163 | for (int j = 0; j != sizeofpr; ++j){ //final column2 for P(r) |
---|
| 164 | //pr[j][1] = pr[j][1]/cormax_; |
---|
| 165 | |
---|
| 166 | // 'Size' is the number of space points, without double counting (excluding |
---|
| 167 | // overlapping regions between shapes). The volume of the combined shape |
---|
| 168 | // is given by V = size * (sum of all sub-volumes) / (Total number of points) |
---|
| 169 | // V = size / (lores_density) |
---|
| 170 | |
---|
| 171 | // - To transform the integral to a sum, we need to give a weight |
---|
| 172 | // to each entry equal to the average space volume of a point (w = V/N = 1/lores_density). |
---|
| 173 | // The final output, I(q), should therefore be multiplied by V*V/N*N. |
---|
| 174 | // Since we will be interested in P(r)/V, we only need to multiply by 1/N*(V/N) = 1/N/lores_density. |
---|
| 175 | // We don't have access to lores_density from this class; we will therefore apply |
---|
| 176 | // this correction externally. |
---|
| 177 | // |
---|
| 178 | // - Since the loop goes through half the points, multiply by 2. |
---|
| 179 | // TODO: have access to lores_density from this class. |
---|
| 180 | // |
---|
| 181 | pr[j][1] = 2.0*pr[j][1]/size; |
---|
| 182 | pr[j][2] = 4.0*pr[j][2]/size/size; |
---|
| 183 | } |
---|
| 184 | pr_ = pr; |
---|
| 185 | |
---|
| 186 | return rmax_; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | Array2D<double> PointsModel::GetPr() |
---|
| 190 | { |
---|
| 191 | return pr_; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | double PointsModel::CalculateRstep(int num_grids, double rmax) |
---|
| 196 | { |
---|
| 197 | assert(num_grids > 0); |
---|
| 198 | |
---|
| 199 | double rstep; |
---|
| 200 | rstep = rmax / num_grids; |
---|
| 201 | |
---|
| 202 | return rstep; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | void PointsModel::OutputPR(const string &fpr){ |
---|
| 206 | ofstream outfile(fpr.c_str()); |
---|
| 207 | if (!outfile) { |
---|
| 208 | cerr << "error: unable to open output file: " |
---|
| 209 | << outfile << endl; |
---|
| 210 | exit(1); |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | double sum = 0.0; |
---|
| 214 | double r_stepsize = 1.0; |
---|
| 215 | if (pr_.dim1()>2) r_stepsize = pr_[1][0] - pr_[0][0]; |
---|
| 216 | |
---|
| 217 | for (int i = 0; i < pr_.dim1(); ++i){ |
---|
| 218 | sum += pr_[i][1]*r_stepsize; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | for (int i = 0; i < pr_.dim1(); ++i){ |
---|
| 222 | if (pr_[i][1]==0) continue; |
---|
| 223 | outfile << pr_[i][0] << " " << (pr_[i][1]/sum) << endl; |
---|
| 224 | } |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | void PointsModel::OutputPDB(const vector<Point3D> &vp,const char *fpr){ |
---|
| 228 | FILE *outfile=NULL; |
---|
| 229 | outfile = fopen(fpr,"w+"); |
---|
| 230 | if (!outfile) { |
---|
| 231 | cerr << "error: unable to open output file: " |
---|
| 232 | << outfile << endl; |
---|
| 233 | exit(1); |
---|
| 234 | } |
---|
| 235 | int size = vp.size(); |
---|
| 236 | int index = 0; |
---|
| 237 | for (int i = 0; i < size; ++i){ |
---|
| 238 | ++index; |
---|
| 239 | fprintf(outfile,"ATOM%7d C%24.3lf%8.3lf%8.3lf%6.3lf\n", \ |
---|
| 240 | index,vp[i].getX(),vp[i].getY(),vp[i].getZ(),vp[i].getSLD()); |
---|
| 241 | } |
---|
| 242 | fclose(outfile); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | PointsModel::~PointsModel() |
---|
| 246 | { |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | void PointsModel::DistDistributionXY(const vector<Point3D> &vp) |
---|
| 250 | { |
---|
| 251 | //the max box get from 3D should be more than enough for 2D,but doesn't hurt |
---|
| 252 | double d_bound = GetDimBound(); |
---|
| 253 | |
---|
| 254 | //using 1A for rstep, so the total bins is the max distance for the object |
---|
| 255 | int sizeofpr = ceil(d_bound) + 1; //+1 just for overflow prevention |
---|
| 256 | rstep_ = 1; |
---|
| 257 | |
---|
| 258 | Array2D<double> pr_xy(sizeofpr,sizeofpr); //2D histogram |
---|
| 259 | |
---|
| 260 | //the max frequency in the correlation histogram |
---|
| 261 | double cormax_xy_ = 0; |
---|
| 262 | |
---|
| 263 | //initialization |
---|
| 264 | pr_xy = 0; |
---|
| 265 | |
---|
| 266 | for (int i = 1; i != sizeofpr; ++i){ |
---|
| 267 | pr_xy[i][0] = pr_xy[i-1][0] + rstep_ ; //column 1: distance |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | int size = vp.size(); |
---|
| 271 | |
---|
| 272 | for (int i1 = 0; i1 < size - 1; ++i1) { |
---|
| 273 | for (int i2 = i1 + 1; i2 < size; ++i2) { |
---|
| 274 | int jx = int(floor(fabs(vp[i1].getX()-vp[i2].getX())/rstep_)); |
---|
| 275 | int jy = int(floor(fabs(vp[i1].getY()-vp[i2].getY())/rstep_)); |
---|
| 276 | //the sld for the pair of points |
---|
| 277 | double its_sld = vp[i1].getSLD()*vp[i2].getSLD(); |
---|
| 278 | |
---|
| 279 | //overflow check |
---|
| 280 | if ((jx >= sizeofpr) || (jy >= sizeofpr)) |
---|
| 281 | { |
---|
| 282 | cerr << "one distance is out of range: " <<endl; |
---|
| 283 | //throw "Out of range"; |
---|
| 284 | } |
---|
| 285 | else{ |
---|
| 286 | pr_xy[jx][jy] += its_sld; |
---|
| 287 | if (pr_xy[jx][jy] > cormax_xy_ ) cormax_xy_ = pr_xy[jx][jy]; |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | //normalize Pr_xy |
---|
| 293 | for (int m = 0; m != sizeofpr; ++m){ //final column2 for P(r) |
---|
| 294 | for (int n = 0; n != sizeofpr; ++n){ |
---|
| 295 | pr_xy[m][n] = pr_xy[m][n]/cormax_xy_; |
---|
| 296 | //cout << "m n:"<<m<<" "<<n<<" "<<pr_xy[m][n]<<endl; |
---|
| 297 | } |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | pr_xy_ = pr_xy; |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | void PointsModel::OutputPR_XY(const std::string &fpr) |
---|
| 304 | { |
---|
| 305 | ofstream outfile(fpr.c_str()); |
---|
| 306 | if (!outfile) { |
---|
| 307 | cerr << "error: unable to open output file: " |
---|
| 308 | << outfile << endl; |
---|
| 309 | exit(1); |
---|
| 310 | } |
---|
| 311 | int size = pr_xy_.dim1(); |
---|
| 312 | //pr_xy_ is a N x N array |
---|
| 313 | for (int i = 0; i != size; ++i){ |
---|
| 314 | for (int j = 0; j != size; ++j) |
---|
| 315 | { |
---|
| 316 | outfile << i << " " << j <<" "<< pr_xy_[i][j] << endl; |
---|
| 317 | } |
---|
| 318 | } |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | void PointsModel::CalculateIQ_2D(IQ *iq,double phi) |
---|
| 322 | { |
---|
| 323 | int nIpoints = iq->GetNumI(); |
---|
| 324 | double qstep = (iq->GetQmax()) / (nIpoints-1); |
---|
| 325 | vector<double> fint(nIpoints, 0); |
---|
| 326 | double Izero = 0; |
---|
| 327 | |
---|
| 328 | //number of bins on x and y axis |
---|
| 329 | int size_r = pr_xy_.dim1(); |
---|
| 330 | //rstep is set to one, otherwise should be cos(phi)*rstep |
---|
| 331 | double cosphi = cos(phi); |
---|
| 332 | double sinphi = sin(phi); |
---|
| 333 | |
---|
| 334 | for(int k = 1; k != nIpoints; ++k){ |
---|
| 335 | double q = k * qstep; |
---|
| 336 | double tmp = cos(q*(cosphi+sinphi)); |
---|
| 337 | |
---|
| 338 | for(int i=0; i!=size_r; ++i){ |
---|
| 339 | for(int j = 0; j!=size_r; ++j){ |
---|
| 340 | fint[k] += pr_xy_[i][j]*tmp; |
---|
| 341 | } |
---|
| 342 | } |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | for(int i=0; i!=size_r; ++i){ |
---|
| 346 | for(int j = 0; j!=size_r; ++j){ |
---|
| 347 | Izero += pr_xy_[i][j]; |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | fint[0] = Izero; |
---|
| 351 | |
---|
| 352 | //assign I(Q) with normalization |
---|
| 353 | for(int j = 0; j < nIpoints; ++j){ |
---|
| 354 | (*iq).iq_data[j][0] = j * qstep; |
---|
| 355 | (*iq).iq_data[j][1] = fint[j] / Izero; |
---|
| 356 | } |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | vector<double> PointsModel::GetCenter() |
---|
| 360 | { |
---|
| 361 | vector<double> vp(3,0); |
---|
| 362 | return vp; |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | double PointsModel::CalculateIQ_2D(double qx, double qy) |
---|
| 366 | { |
---|
| 367 | //for each (Qx,Qy) on 2D detector, calculate I |
---|
| 368 | double q = sqrt(qx*qx+qy*qy); |
---|
| 369 | double I = 0; |
---|
| 370 | |
---|
| 371 | double cosphi = qx/q; |
---|
| 372 | double sinphi = qy/q; |
---|
| 373 | double tmp = cos(q*(cosphi+sinphi)); |
---|
| 374 | |
---|
| 375 | //loop through P(r) on xy plane |
---|
| 376 | int size_r = pr_xy_.dim1(); |
---|
| 377 | for(int i=-size_r+1; i!=size_r; ++i){ |
---|
| 378 | for(int j = -size_r+1; j!=size_r; ++j){ |
---|
| 379 | //rstep is set to one, left out from calculation |
---|
| 380 | I += pr_xy_[abs(i)][abs(j)]*cos(q*(cosphi*i+sinphi*j)); |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | //return I, without normalization |
---|
| 385 | return I; |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | /* |
---|
| 389 | * 2D simulation for oriented systems |
---|
| 390 | * The beam direction is assumed to be in the z direction. |
---|
| 391 | * |
---|
| 392 | * @param points: vector of space points |
---|
| 393 | * @param qx: qx [A-1] |
---|
| 394 | * @param qy: qy [A-1] |
---|
| 395 | * @return: I(qx, qy) for the system described by the space points [cm-1] |
---|
| 396 | * |
---|
| 397 | */ |
---|
| 398 | double PointsModel::CalculateIQ_2D(const vector<Point3D>&points, double qx, double qy){ |
---|
| 399 | /* |
---|
| 400 | * TODO: the vector of points should really be part of the class |
---|
| 401 | * This is a design flaw inherited from the original programmer. |
---|
| 402 | */ |
---|
| 403 | |
---|
| 404 | int size = points.size(); |
---|
| 405 | |
---|
| 406 | double cos_term = 0; |
---|
| 407 | double sin_term = 0; |
---|
| 408 | for (int i = 0; i < size; i++) { |
---|
| 409 | //the sld for the pair of points |
---|
| 410 | |
---|
| 411 | double phase = qx*points[i].getX() + qy*points[i].getY(); |
---|
| 412 | |
---|
| 413 | cos_term += cos(phase) * points[i].getSLD(); |
---|
| 414 | sin_term += sin(phase) * points[i].getSLD(); |
---|
| 415 | |
---|
| 416 | } |
---|
| 417 | |
---|
| 418 | // P(q) = 1/V I(q) = (V/N)^2 (1/V) (cos_term^2 + sin_term^2) |
---|
| 419 | // We divide by N here and we will multiply by the density later. |
---|
| 420 | |
---|
| 421 | return (cos_term*cos_term + sin_term*sin_term)/size; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | double PointsModel::CalculateIQ_2D_Error(const vector<Point3D>&points, double qx, double qy){ |
---|
| 425 | |
---|
| 426 | int size = points.size(); |
---|
| 427 | |
---|
| 428 | double delta_x, delta_y; |
---|
| 429 | double q_t2 = qx*qx + qy*qy; |
---|
| 430 | double cos_term = 0; |
---|
| 431 | double sin_term = 0; |
---|
| 432 | double cos_err = 0; |
---|
| 433 | double sin_err = 0; |
---|
| 434 | |
---|
| 435 | // Estimate the error on the position of each point |
---|
| 436 | // in x or y as V^(1/3)/N |
---|
| 437 | |
---|
| 438 | for (int i = 0; i < size; i++) { |
---|
| 439 | |
---|
| 440 | |
---|
| 441 | //the sld for the pair of points |
---|
| 442 | |
---|
| 443 | double phase = qx*points[i].getX() + qy*points[i].getY(); |
---|
| 444 | double sld_fac = points[i].getSLD() * points[i].getSLD(); |
---|
| 445 | |
---|
| 446 | cos_term += cos(phase) * points[i].getSLD(); |
---|
| 447 | sin_term += sin(phase) * points[i].getSLD(); |
---|
| 448 | |
---|
| 449 | sin_err += cos(phase) * cos(phase) * sld_fac; |
---|
| 450 | cos_err += sin(phase) * sin(phase) * sld_fac; |
---|
| 451 | |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | // P(q) = 1/V I(q) = (V/N)^2 (1/V) (cos_term^2 + sin_term^2) |
---|
| 455 | // We divide by N here and we will multiply by the density later. |
---|
| 456 | |
---|
| 457 | // We will need to multiply this error by V^(1/3)/N. |
---|
| 458 | // We don't have access to V from within this class. |
---|
| 459 | return 2*sqrt(cos_term*cos_term*cos_err*cos_err + sin_term*sin_term*sin_err*sin_err)/size; |
---|
| 460 | } |
---|
| 461 | |
---|