source: sasview/src/sas/sasgui/perspectives/invariant/media/invariant_help.rst @ 6d7b252b

Last change on this file since 6d7b252b was 094b9eb, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

docs: update invariant to use latex for math markup

  • Property mode set to 100644
File size: 4.2 KB
RevLine 
[ec392464]1.. invariant_help.rst
2
3.. This is a port of the original SasView html help file to ReSTructured text
4.. by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
5
[b64b87c]6Invariant Calculation
7=====================
[ec392464]8
[a9dc4eb]9Description
10-----------
[ec392464]11
[094b9eb]12The scattering, or Porod, invariant ($Q^*$) is a model-independent quantity that
[0721c3d]13can be easily calculated from scattering data.
[ec392464]14
[094b9eb]15For two phase systems, the scattering invariant is defined as the integral of
16the square of the wavevector transfer ($Q$) multiplied by the scattering cross section
17over the full range of $Q$ from zero to infinity, that is
[ec392464]18
[094b9eb]19.. math::
[ec392464]20
[094b9eb]21    Q^* = \int_0^\infty q^2I(q)\,dq
[ec392464]22
[094b9eb]23in the case of pinhole geometry. For slit geometry the invariant is given by
24
25.. math::
26
27    Q^* = \Delta q_v \int_0^\infty qI(q)\,dq
28
29where $\Delta q_v$ is the slit height.
30
31The worth of $Q^*$  is that it can be used to determine the volume fraction and
32the specific area of a sample. Whilst these quantities are useful in their own
[0721c3d]33right they can also be used in further analysis.
[ec392464]34
[094b9eb]35The difficulty with using $Q^*$  arises from the fact that experimental data is
36never measured over the range $0 \le Q \le \infty$. At best, combining USAS and
37WAS data might cover the range $10^{-5} \le Q \le 10$ 1/\ |Ang| . Thus it is usually
38necessary to extrapolate the experimental data to low and high $Q$. For this
[ec392464]39
[094b9eb]40High-\ $Q$ region (>= *Qmax* in data)
[ec392464]41
[094b9eb]42*  The power law function $C/Q^4$ is used where the constant
43   $C = 2 \pi \Delta\rho S_v$ is to be found by fitting part of data
44   within the range $Q_{N-m}$ to $Q_N$ (where $m < N$).
[ec392464]45
[094b9eb]46Low-\ $Q$ region (<= *Qmin* in data)
[ec392464]47
[094b9eb]48*  The Guinier function $I_0 exp(-R_g^2 Q^2/3)$ where $I_0$
49   and $R_g$ are obtained by fitting as for the high-\ $Q$ region above.
[0721c3d]50   Alternatively a power law can be used.
[ec392464]51
[0721c3d]52.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[ec392464]53
[b64b87c]54Using invariant analysis
55------------------------
[0721c3d]56
571) Select *Invariant* from the *Analysis* menu on the SasView toolbar.
58
592) Load some data with the *Data Explorer*.
60
[094b9eb]613) Select a dataset and use the *Send To* button on the *Data Explorer* to load
[b64b87c]62   the dataset into the *Invariant* panel.
[0721c3d]63
[094b9eb]644) Use the *Customised Input* boxes on the *Invariant* panel to subtract
65   any background, specify the contrast (i.e. difference in SLDs - this must be
66   specified for the eventual value of $Q^*$  to be on an absolute scale), or to
[0721c3d]67   rescale the data.
[ec392464]68
[094b9eb]695) Adjust the extrapolation range as necessary. In most cases the default
[0721c3d]70   values will suffice.
[ec392464]71
[0721c3d]726) Click the *Compute* button.
[ec392464]73
[094b9eb]747) To include a lower and/or higher $Q$ range, check the relevant *Enable
[0721c3d]75   Extrapolate* check boxes.
[094b9eb]76
77   If power law extrapolations are chosen, the exponent can be either held
78   fixed or fitted. The number of points, Npts, to be used for the basis of the
[0721c3d]79   extrapolation can also be specified.
[ec392464]80
[094b9eb]818) If the value of $Q^*$  calculated with the extrapolated regions is invalid, a
[b64b87c]82   red warning will appear at the top of the *Invariant* panel.
[ec392464]83
[094b9eb]84   The details of the calculation are available by clicking the *Details*
[0721c3d]85   button in the middle of the panel.
[ec392464]86
[6aad2e8]87.. image:: image005.png
[ec392464]88
89.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
90
[a9dc4eb]91Parameters
92----------
[ec392464]93
94Volume Fraction
[a9dc4eb]95^^^^^^^^^^^^^^^
[ec392464]96
[094b9eb]97The volume fraction $\phi$ is related to $Q^*$  by
98
99.. math::
[0721c3d]100
[094b9eb]101    \phi(1 - \phi) = \frac{Q^*}{2\pi^2(\Delta\rho)^2} \equiv A
[ec392464]102
[094b9eb]103where $\Delta\rho$ is the SLD contrast.
[ec392464]104
[094b9eb]105.. math::
106
107    \phi = \frac{1 \pm \sqrt{1 - 4A}}{2}
[ec392464]108
109.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
110
111Specific Surface Area
[a9dc4eb]112^^^^^^^^^^^^^^^^^^^^^
[ec392464]113
[094b9eb]114The specific surface area $S_v$ is related to $Q^*$  by
115
116.. math::
[ec392464]117
[094b9eb]118    S_v = \frac{2\pi\phi(1-\phi)C_p}{Q^*} = \frac{2\pi A C_p}{Q^*}
[ec392464]119
[094b9eb]120where $C_p$ is the Porod constant.
[ec392464]121
122.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
123
[a9dc4eb]124Reference
125---------
[ec392464]126
[0721c3d]127O. Glatter and O. Kratky
128Chapter 2 in *Small Angle X-Ray Scattering*
129Academic Press, New York, 1982
[ec392464]130
[484141c]131http://web.archive.org/web/20110824105537/http://physchem.kfunigraz.ac.at/sm/Service/Glatter_Kratky_SAXS_1982.zip
[ec392464]132
[0721c3d]133.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[ec392464]134
[a9dc4eb]135.. note::  This help document was last changed by Steve King, 01May2015
Note: See TracBrowser for help on using the repository browser.