[da53353] | 1 | .. sm_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
| 6 | .. |inlineimage004| image:: sm_image004.gif |
---|
| 7 | .. |inlineimage005| image:: sm_image005.gif |
---|
| 8 | .. |inlineimage008| image:: sm_image008.gif |
---|
| 9 | .. |inlineimage009| image:: sm_image009.gif |
---|
| 10 | .. |inlineimage010| image:: sm_image010.gif |
---|
| 11 | .. |inlineimage011| image:: sm_image011.gif |
---|
| 12 | .. |inlineimage012| image:: sm_image012.gif |
---|
| 13 | .. |inlineimage018| image:: sm_image018.gif |
---|
| 14 | .. |inlineimage019| image:: sm_image019.gif |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 18 | |
---|
[f256d9b] | 19 | Smearing Functions |
---|
| 20 | ================== |
---|
[da53353] | 21 | |
---|
[f256d9b] | 22 | Sometimes it will be necessary to correct reduced experimental data for the |
---|
| 23 | physical effects of the instrumental geometry in use. This process is called |
---|
| 24 | *desmearing*. However, calculated/simulated data - which by definition will be |
---|
| 25 | perfect/exact - can be *smeared* to make it more representative of what might |
---|
| 26 | actually be measured experimentally. |
---|
| 27 | |
---|
| 28 | SasView provides the following three smearing algorithms: |
---|
[da53353] | 29 | |
---|
[a0637de] | 30 | * *Slit Smearing* |
---|
| 31 | * *Pinhole Smearing* |
---|
| 32 | * *2D Smearing* |
---|
[da53353] | 33 | |
---|
[a0637de] | 34 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 35 | |
---|
| 36 | Slit Smearing |
---|
[f256d9b] | 37 | ------------- |
---|
| 38 | |
---|
| 39 | **This type of smearing is normally only encountered with data from X-ray Kratky** |
---|
| 40 | **cameras or X-ray/neutron Bonse-Hart USAXS/USANS instruments.** |
---|
[da53353] | 41 | |
---|
[f256d9b] | 42 | The slit-smeared scattering intensity is defined by |
---|
[da53353] | 43 | |
---|
| 44 | .. image:: sm_image002.gif |
---|
| 45 | |
---|
[f256d9b] | 46 | where *Norm* is given by |
---|
[da53353] | 47 | |
---|
| 48 | .. image:: sm_image003.gif |
---|
| 49 | |
---|
[f256d9b] | 50 | **[Equation 1]** |
---|
[da53353] | 51 | |
---|
| 52 | The functions |inlineimage004| and |inlineimage005| |
---|
| 53 | refer to the slit width weighting function and the slit height weighting |
---|
[f256d9b] | 54 | determined at the given *q* point, respectively. It is assumed that the weighting |
---|
| 55 | function is described by a rectangular function, such that |
---|
[da53353] | 56 | |
---|
| 57 | .. image:: sm_image006.gif |
---|
| 58 | |
---|
[f256d9b] | 59 | **[Equation 2]** |
---|
[da53353] | 60 | |
---|
| 61 | and |
---|
| 62 | |
---|
| 63 | .. image:: sm_image007.gif |
---|
| 64 | |
---|
[f256d9b] | 65 | **[Equation 3]** |
---|
[da53353] | 66 | |
---|
[f256d9b] | 67 | so that |inlineimage008| |inlineimage009| for |inlineimage010| and *u*\ . |
---|
[da53353] | 68 | |
---|
[f256d9b] | 69 | Here |inlineimage011| and |inlineimage012| stand for |
---|
| 70 | the slit height (FWHM/2) and the slit width (FWHM/2) in *q* space. |
---|
| 71 | |
---|
| 72 | This simplifies the integral in Equation 1 to |
---|
[da53353] | 73 | |
---|
| 74 | .. image:: sm_image013.gif |
---|
| 75 | |
---|
[f256d9b] | 76 | **[Equation 4]** |
---|
| 77 | |
---|
| 78 | which may be solved numerically, depending on the nature of |inlineimage011| and |inlineimage012| . |
---|
[da53353] | 79 | |
---|
[f256d9b] | 80 | Solution 1 |
---|
| 81 | ^^^^^^^^^^ |
---|
[da53353] | 82 | |
---|
[f256d9b] | 83 | **For** |inlineimage012| **= 0 and** |inlineimage011| **= constant.** |
---|
[da53353] | 84 | |
---|
| 85 | .. image:: sm_image016.gif |
---|
| 86 | |
---|
[f256d9b] | 87 | For discrete *q* values, at the *q* values of the data points and at the *q* |
---|
| 88 | values extended up to *q*\ :sub:`N`\ = *q*\ :sub:`i` + |inlineimage011| the smeared |
---|
| 89 | intensity can be approximately calculated as |
---|
[da53353] | 90 | |
---|
| 91 | .. image:: sm_image017.gif |
---|
| 92 | |
---|
[f256d9b] | 93 | **[Equation 5]** |
---|
[da53353] | 94 | |
---|
[f256d9b] | 95 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *i* or *j* > *N-1*. |
---|
[da53353] | 96 | |
---|
[f256d9b] | 97 | Solution 2 |
---|
| 98 | ^^^^^^^^^^ |
---|
[da53353] | 99 | |
---|
[f256d9b] | 100 | **For** |inlineimage012| **= constant and** |inlineimage011| **= 0.** |
---|
[da53353] | 101 | |
---|
[f256d9b] | 102 | Similar to Case 1 |
---|
[da53353] | 103 | |
---|
[f256d9b] | 104 | |inlineimage019| for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| |
---|
[da53353] | 105 | |
---|
[f256d9b] | 106 | **[Equation 6]** |
---|
[da53353] | 107 | |
---|
[f256d9b] | 108 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. |
---|
[da53353] | 109 | |
---|
[f256d9b] | 110 | Solution 3 |
---|
| 111 | ^^^^^^^^^^ |
---|
| 112 | |
---|
| 113 | **For** |inlineimage011| **= constant and** |inlineimage011| **= constant.** |
---|
| 114 | |
---|
| 115 | In this case, the best way is to perform the integration of Equation 1 |
---|
| 116 | numerically for both slit height and slit width. However, the numerical |
---|
| 117 | integration is imperfect unless a large number of iterations, say, at |
---|
| 118 | least 10000 by 10000 for each element of the matrix *W*, is performed. |
---|
| 119 | This is usually too slow for routine use. |
---|
| 120 | |
---|
| 121 | An alternative approach is used in SasView which assumes |
---|
| 122 | slit width << slit height. This method combines Solution 1 with the |
---|
| 123 | numerical integration for the slit width. Then |
---|
[da53353] | 124 | |
---|
| 125 | .. image:: sm_image020.gif |
---|
| 126 | |
---|
[f256d9b] | 127 | **[Equation 7]** |
---|
| 128 | |
---|
| 129 | for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| |
---|
[da53353] | 130 | |
---|
[f256d9b] | 131 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. |
---|
[da53353] | 132 | |
---|
[a0637de] | 133 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 134 | |
---|
| 135 | Pinhole Smearing |
---|
[f256d9b] | 136 | ---------------- |
---|
[da53353] | 137 | |
---|
[f256d9b] | 138 | **This is the type of smearing normally encountered with data from synchrotron** |
---|
| 139 | **SAXS cameras and SANS instruments.** |
---|
[da53353] | 140 | |
---|
[f256d9b] | 141 | The pinhole smearing computation is performed in a similar fashion to the slit- |
---|
| 142 | smeared case above except that the weight function used is a Gaussian. Thus |
---|
| 143 | Equation 6 becomes |
---|
[da53353] | 144 | |
---|
[f256d9b] | 145 | .. image:: sm_image021.gif |
---|
[da53353] | 146 | |
---|
[f256d9b] | 147 | **[Equation 8]** |
---|
[da53353] | 148 | |
---|
[a0637de] | 149 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 150 | |
---|
| 151 | 2D Smearing |
---|
[f256d9b] | 152 | ----------- |
---|
[da53353] | 153 | |
---|
[f256d9b] | 154 | The 2D smearing computation is performed in a similar fashion to the 1D pinhole |
---|
| 155 | smearing above except that the weight function used is a 2D elliptical Gaussian. |
---|
| 156 | Thus |
---|
[da53353] | 157 | |
---|
| 158 | .. image:: sm_image022.gif |
---|
| 159 | |
---|
[f256d9b] | 160 | **[Equation 9]** |
---|
[da53353] | 161 | |
---|
[f256d9b] | 162 | In Equation 9, *x*\ :sub:`0` = *q* cos(|theta|), *y*\ :sub:`0` = *q* sin(|theta|), and |
---|
| 163 | the primed axes, are all in the coordinate rotated by an angle |theta| about |
---|
| 164 | the z-axis (see the figure below) so that *x'*\ :sub:`0` = *x*\ :sub:`0` cos(|theta|) + |
---|
| 165 | *y*\ :sub:`0` sin(|theta|) and *y'*\ :sub:`0` = -*x*\ :sub:`0` sin(|theta|) + |
---|
| 166 | *y*\ :sub:`0` cos(|theta|). Note that the rotation angle is zero for a x-y symmetric |
---|
| 167 | elliptical Gaussian distribution. The *A* is a normalization factor. |
---|
[da53353] | 168 | |
---|
| 169 | .. image:: sm_image023.gif |
---|
| 170 | |
---|
[f256d9b] | 171 | Now we consider a numerical integration where each of the bins in |theta| and *R* are |
---|
| 172 | *evenly* (this is to simplify the equation below) distributed by |bigdelta|\ |theta| |
---|
| 173 | and |bigdelta|\ R, respectively, and it is further assumed that *I(x',y')* is constant |
---|
| 174 | within the bins. Then |
---|
[da53353] | 175 | |
---|
| 176 | .. image:: sm_image024.gif |
---|
| 177 | |
---|
[f256d9b] | 178 | **[Equation 10]** |
---|
| 179 | |
---|
| 180 | Since the weighting factor on each of the bins is known, it is convenient to |
---|
| 181 | transform *x'-y'* back to *x-y* coordinates (by rotating it by -|theta| around the |
---|
| 182 | *z* axis). |
---|
[da53353] | 183 | |
---|
[f256d9b] | 184 | Then, for a polar symmetric smear |
---|
[da53353] | 185 | |
---|
| 186 | .. image:: sm_image025.gif |
---|
| 187 | |
---|
[f256d9b] | 188 | **[Equation 11]** |
---|
[da53353] | 189 | |
---|
| 190 | where |
---|
| 191 | |
---|
| 192 | .. image:: sm_image026.gif |
---|
| 193 | |
---|
[f256d9b] | 194 | while for a *x-y* symmetric smear |
---|
[da53353] | 195 | |
---|
| 196 | .. image:: sm_image027.gif |
---|
| 197 | |
---|
[f256d9b] | 198 | **[Equation 12]** |
---|
[da53353] | 199 | |
---|
| 200 | where |
---|
| 201 | |
---|
| 202 | .. image:: sm_image028.gif |
---|
| 203 | |
---|
[f256d9b] | 204 | The current version of the SasView uses Equation 11 for 2D smearing, assuming |
---|
| 205 | that all the Gaussian weighting functions are aligned in the polar coordinate. |
---|
[da53353] | 206 | |
---|
[f256d9b] | 207 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 208 | |
---|
| 209 | Weighting & Normalization |
---|
| 210 | ------------------------- |
---|
| 211 | |
---|
| 212 | In all the cases above, the weighting matrix *W* is calculated on the first call |
---|
| 213 | to a smearing function, and includes ~60 *q* values (finely and evenly binned) |
---|
| 214 | below (>0) and above the *q* range of data in order to smear all data points for |
---|
| 215 | a given model and slit/pinhole size. The *Norm* factor is found numerically with the |
---|
| 216 | weighting matrix and applied on the computation of *I*\ :sub:`s`. |
---|
[da53353] | 217 | |
---|
| 218 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[f256d9b] | 219 | |
---|
| 220 | .. note:: This help document was last changed by Steve King, 01May2015 |
---|