[da53353] | 1 | .. sm_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
| 6 | .. |inlineimage004| image:: sm_image004.gif |
---|
| 7 | .. |inlineimage005| image:: sm_image005.gif |
---|
| 8 | .. |inlineimage008| image:: sm_image008.gif |
---|
| 9 | .. |inlineimage009| image:: sm_image009.gif |
---|
| 10 | .. |inlineimage010| image:: sm_image010.gif |
---|
| 11 | .. |inlineimage011| image:: sm_image011.gif |
---|
| 12 | .. |inlineimage012| image:: sm_image012.gif |
---|
| 13 | .. |inlineimage018| image:: sm_image018.gif |
---|
| 14 | .. |inlineimage019| image:: sm_image019.gif |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 18 | |
---|
[f256d9b] | 19 | Smearing Functions |
---|
| 20 | ================== |
---|
[da53353] | 21 | |
---|
[27aabc1] | 22 | Sometimes the instrumental geometry used to acquire the experimental data has |
---|
| 23 | an impact on the clarity of features in the reduced scattering curve. For |
---|
| 24 | example, peaks or fringes might be slightly broadened. This is known as |
---|
| 25 | *Q resolution smearing*. To compensate for this effect one can either try and |
---|
| 26 | remove the resolution contribution - a process called *desmearing* - or add the |
---|
| 27 | resolution contribution into a model calculation/simulation (which by definition |
---|
| 28 | will be exact) to make it more representative of what has been measured |
---|
| 29 | experimentally - a process called *smearing*. SasView will do the latter. |
---|
| 30 | |
---|
| 31 | Both smearing and desmearing rely on functions to describe the resolution |
---|
| 32 | effect. SasView provides three smearing algorithms: |
---|
[da53353] | 33 | |
---|
[a0637de] | 34 | * *Slit Smearing* |
---|
| 35 | * *Pinhole Smearing* |
---|
| 36 | * *2D Smearing* |
---|
[da53353] | 37 | |
---|
[27aabc1] | 38 | SasView also has an option to use Q resolution data (estimated at the time of |
---|
| 39 | data reduction) supplied in a reduced data file: the *Use dQ data* radio button. |
---|
| 40 | |
---|
| 41 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 42 | |
---|
| 43 | dQ Smearing |
---|
| 44 | ----------- |
---|
| 45 | |
---|
| 46 | If this option is checked, SasView will assume that the supplied dQ values |
---|
| 47 | represent the standard deviations of Gaussian functions. |
---|
| 48 | |
---|
[a0637de] | 49 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 50 | |
---|
| 51 | Slit Smearing |
---|
[f256d9b] | 52 | ------------- |
---|
| 53 | |
---|
| 54 | **This type of smearing is normally only encountered with data from X-ray Kratky** |
---|
| 55 | **cameras or X-ray/neutron Bonse-Hart USAXS/USANS instruments.** |
---|
[da53353] | 56 | |
---|
[f256d9b] | 57 | The slit-smeared scattering intensity is defined by |
---|
[da53353] | 58 | |
---|
| 59 | .. image:: sm_image002.gif |
---|
| 60 | |
---|
[f256d9b] | 61 | where *Norm* is given by |
---|
[da53353] | 62 | |
---|
| 63 | .. image:: sm_image003.gif |
---|
| 64 | |
---|
[f256d9b] | 65 | **[Equation 1]** |
---|
[da53353] | 66 | |
---|
| 67 | The functions |inlineimage004| and |inlineimage005| |
---|
| 68 | refer to the slit width weighting function and the slit height weighting |
---|
[f256d9b] | 69 | determined at the given *q* point, respectively. It is assumed that the weighting |
---|
| 70 | function is described by a rectangular function, such that |
---|
[da53353] | 71 | |
---|
| 72 | .. image:: sm_image006.gif |
---|
| 73 | |
---|
[f256d9b] | 74 | **[Equation 2]** |
---|
[da53353] | 75 | |
---|
| 76 | and |
---|
| 77 | |
---|
| 78 | .. image:: sm_image007.gif |
---|
| 79 | |
---|
[f256d9b] | 80 | **[Equation 3]** |
---|
[da53353] | 81 | |
---|
[f256d9b] | 82 | so that |inlineimage008| |inlineimage009| for |inlineimage010| and *u*\ . |
---|
[da53353] | 83 | |
---|
[f256d9b] | 84 | Here |inlineimage011| and |inlineimage012| stand for |
---|
| 85 | the slit height (FWHM/2) and the slit width (FWHM/2) in *q* space. |
---|
| 86 | |
---|
| 87 | This simplifies the integral in Equation 1 to |
---|
[da53353] | 88 | |
---|
| 89 | .. image:: sm_image013.gif |
---|
| 90 | |
---|
[f256d9b] | 91 | **[Equation 4]** |
---|
| 92 | |
---|
| 93 | which may be solved numerically, depending on the nature of |inlineimage011| and |inlineimage012| . |
---|
[da53353] | 94 | |
---|
[f256d9b] | 95 | Solution 1 |
---|
| 96 | ^^^^^^^^^^ |
---|
[da53353] | 97 | |
---|
[f256d9b] | 98 | **For** |inlineimage012| **= 0 and** |inlineimage011| **= constant.** |
---|
[da53353] | 99 | |
---|
| 100 | .. image:: sm_image016.gif |
---|
| 101 | |
---|
[f256d9b] | 102 | For discrete *q* values, at the *q* values of the data points and at the *q* |
---|
| 103 | values extended up to *q*\ :sub:`N`\ = *q*\ :sub:`i` + |inlineimage011| the smeared |
---|
| 104 | intensity can be approximately calculated as |
---|
[da53353] | 105 | |
---|
| 106 | .. image:: sm_image017.gif |
---|
| 107 | |
---|
[f256d9b] | 108 | **[Equation 5]** |
---|
[da53353] | 109 | |
---|
[f256d9b] | 110 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *i* or *j* > *N-1*. |
---|
[da53353] | 111 | |
---|
[f256d9b] | 112 | Solution 2 |
---|
| 113 | ^^^^^^^^^^ |
---|
[da53353] | 114 | |
---|
[f256d9b] | 115 | **For** |inlineimage012| **= constant and** |inlineimage011| **= 0.** |
---|
[da53353] | 116 | |
---|
[f256d9b] | 117 | Similar to Case 1 |
---|
[da53353] | 118 | |
---|
[f256d9b] | 119 | |inlineimage019| for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| |
---|
[da53353] | 120 | |
---|
[f256d9b] | 121 | **[Equation 6]** |
---|
[da53353] | 122 | |
---|
[f256d9b] | 123 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. |
---|
[da53353] | 124 | |
---|
[f256d9b] | 125 | Solution 3 |
---|
| 126 | ^^^^^^^^^^ |
---|
| 127 | |
---|
| 128 | **For** |inlineimage011| **= constant and** |inlineimage011| **= constant.** |
---|
| 129 | |
---|
| 130 | In this case, the best way is to perform the integration of Equation 1 |
---|
| 131 | numerically for both slit height and slit width. However, the numerical |
---|
| 132 | integration is imperfect unless a large number of iterations, say, at |
---|
| 133 | least 10000 by 10000 for each element of the matrix *W*, is performed. |
---|
| 134 | This is usually too slow for routine use. |
---|
| 135 | |
---|
| 136 | An alternative approach is used in SasView which assumes |
---|
| 137 | slit width << slit height. This method combines Solution 1 with the |
---|
| 138 | numerical integration for the slit width. Then |
---|
[da53353] | 139 | |
---|
| 140 | .. image:: sm_image020.gif |
---|
| 141 | |
---|
[f256d9b] | 142 | **[Equation 7]** |
---|
| 143 | |
---|
| 144 | for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| |
---|
[da53353] | 145 | |
---|
[f256d9b] | 146 | where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. |
---|
[da53353] | 147 | |
---|
[a0637de] | 148 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 149 | |
---|
| 150 | Pinhole Smearing |
---|
[f256d9b] | 151 | ---------------- |
---|
[da53353] | 152 | |
---|
[f256d9b] | 153 | **This is the type of smearing normally encountered with data from synchrotron** |
---|
| 154 | **SAXS cameras and SANS instruments.** |
---|
[da53353] | 155 | |
---|
[f256d9b] | 156 | The pinhole smearing computation is performed in a similar fashion to the slit- |
---|
| 157 | smeared case above except that the weight function used is a Gaussian. Thus |
---|
| 158 | Equation 6 becomes |
---|
[da53353] | 159 | |
---|
[f256d9b] | 160 | .. image:: sm_image021.gif |
---|
[da53353] | 161 | |
---|
[f256d9b] | 162 | **[Equation 8]** |
---|
[da53353] | 163 | |
---|
[a0637de] | 164 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 165 | |
---|
| 166 | 2D Smearing |
---|
[f256d9b] | 167 | ----------- |
---|
[da53353] | 168 | |
---|
[f256d9b] | 169 | The 2D smearing computation is performed in a similar fashion to the 1D pinhole |
---|
| 170 | smearing above except that the weight function used is a 2D elliptical Gaussian. |
---|
| 171 | Thus |
---|
[da53353] | 172 | |
---|
| 173 | .. image:: sm_image022.gif |
---|
| 174 | |
---|
[f256d9b] | 175 | **[Equation 9]** |
---|
[da53353] | 176 | |
---|
[f256d9b] | 177 | In Equation 9, *x*\ :sub:`0` = *q* cos(|theta|), *y*\ :sub:`0` = *q* sin(|theta|), and |
---|
| 178 | the primed axes, are all in the coordinate rotated by an angle |theta| about |
---|
| 179 | the z-axis (see the figure below) so that *x'*\ :sub:`0` = *x*\ :sub:`0` cos(|theta|) + |
---|
| 180 | *y*\ :sub:`0` sin(|theta|) and *y'*\ :sub:`0` = -*x*\ :sub:`0` sin(|theta|) + |
---|
| 181 | *y*\ :sub:`0` cos(|theta|). Note that the rotation angle is zero for a x-y symmetric |
---|
| 182 | elliptical Gaussian distribution. The *A* is a normalization factor. |
---|
[da53353] | 183 | |
---|
| 184 | .. image:: sm_image023.gif |
---|
| 185 | |
---|
[f256d9b] | 186 | Now we consider a numerical integration where each of the bins in |theta| and *R* are |
---|
| 187 | *evenly* (this is to simplify the equation below) distributed by |bigdelta|\ |theta| |
---|
| 188 | and |bigdelta|\ R, respectively, and it is further assumed that *I(x',y')* is constant |
---|
| 189 | within the bins. Then |
---|
[da53353] | 190 | |
---|
| 191 | .. image:: sm_image024.gif |
---|
| 192 | |
---|
[f256d9b] | 193 | **[Equation 10]** |
---|
| 194 | |
---|
| 195 | Since the weighting factor on each of the bins is known, it is convenient to |
---|
| 196 | transform *x'-y'* back to *x-y* coordinates (by rotating it by -|theta| around the |
---|
| 197 | *z* axis). |
---|
[da53353] | 198 | |
---|
[f256d9b] | 199 | Then, for a polar symmetric smear |
---|
[da53353] | 200 | |
---|
| 201 | .. image:: sm_image025.gif |
---|
| 202 | |
---|
[f256d9b] | 203 | **[Equation 11]** |
---|
[da53353] | 204 | |
---|
| 205 | where |
---|
| 206 | |
---|
| 207 | .. image:: sm_image026.gif |
---|
| 208 | |
---|
[f256d9b] | 209 | while for a *x-y* symmetric smear |
---|
[da53353] | 210 | |
---|
| 211 | .. image:: sm_image027.gif |
---|
| 212 | |
---|
[f256d9b] | 213 | **[Equation 12]** |
---|
[da53353] | 214 | |
---|
| 215 | where |
---|
| 216 | |
---|
| 217 | .. image:: sm_image028.gif |
---|
| 218 | |
---|
[f256d9b] | 219 | The current version of the SasView uses Equation 11 for 2D smearing, assuming |
---|
| 220 | that all the Gaussian weighting functions are aligned in the polar coordinate. |
---|
[da53353] | 221 | |
---|
[f256d9b] | 222 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 223 | |
---|
| 224 | Weighting & Normalization |
---|
| 225 | ------------------------- |
---|
| 226 | |
---|
| 227 | In all the cases above, the weighting matrix *W* is calculated on the first call |
---|
| 228 | to a smearing function, and includes ~60 *q* values (finely and evenly binned) |
---|
| 229 | below (>0) and above the *q* range of data in order to smear all data points for |
---|
| 230 | a given model and slit/pinhole size. The *Norm* factor is found numerically with the |
---|
| 231 | weighting matrix and applied on the computation of *I*\ :sub:`s`. |
---|
[da53353] | 232 | |
---|
| 233 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[f256d9b] | 234 | |
---|
| 235 | .. note:: This help document was last changed by Steve King, 01May2015 |
---|