source: sasview/src/sas/sasgui/perspectives/fitting/media/residuals_help.rst @ a583749

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since a583749 was 99ded31, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

improve description of 'fitting quality' and clean up latex formatting

  • Property mode set to 100644
File size: 3.1 KB
RevLine 
[ad2ce4e]1.. residuals_help.rst
2
3
4.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
5
6.. _Assessing_Fit_Quality:
7
8Assessing Fit Quality
9---------------------
10
11When performing model-fits to some experimental data it is helpful to be able to
12gauge how good an individual fit is, how it compares to a fit of the *same model*
13*to another set of data*, or how it compares to a fit of a *different model to the*
14*same data*.
15
16One way is obviously to just inspect the graph of the experimental data and to
17see how closely (or not!) the 'theory' calculation matches it. But *SasView*
18also provides two other measures of the quality of a fit:
19
[5ed76f8]20*  $\chi^2$ (or 'Chi2'; pronounced 'chi-squared')
[ad2ce4e]21*  *Residuals*
22
23.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
24
25Chi2
26^^^^
27
[99ded31]28$\chi^2$ is a statistical parameter that quantifies the differences between
29an observed data set and an expected dataset (or 'theory').
[ad2ce4e]30
[99ded31]31When showing the a model with the data, *SasView* displays this parameter
32normalized to the number of data points, $N_\mathrm{pts}$ such that
[ad2ce4e]33
[5ed76f8]34.. math::
[ad2ce4e]35
[99ded31]36  \chi^2_N
37  =  \sum[(Y_i - \mathrm{theory}_i)^2 / \mathrm{error}_i^2] / N_\mathrm{pts}
[5ed76f8]38
[99ded31]39When performing a fit, *SasView* instead displays the reduced $\chi^2_R$,
40which takes into account the number of fitting parameters $N_\mathrm{par}$
41(to calculate the number of 'degrees of freedom'). This is computed as
[ad2ce4e]42
[99ded31]43.. math::
44
45  \chi^2_R
46  =  \sum[(Y_i - \mathrm{theory}_i)^2 / \mathrm{error}_i^2]
47  / [N_\mathrm{pts} - N_\mathrm{par}]
48
49The normalized $\chi^2_N$ and the reduced $\chi^2_R$ are very close to each
50other when $N_\mathrm{pts} \gg N_\mathrm{par}$.
[ad2ce4e]51
[99ded31]52For a good fit, $\chi^2_R$ tends to 1.
53
54$\chi^2_R$ is sometimes referred to as the 'goodness-of-fit' parameter.
[ad2ce4e]55
56.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
57
58Residuals
59^^^^^^^^^
60
61A residual is the difference between an observed value and an estimate of that
[99ded31]62value, such as a 'theory' calculation (whereas the difference between an
63observed value and its *true* value is its error).
[ad2ce4e]64
[5ed76f8]65*SasView* calculates 'normalized residuals', $R_i$, for each data point in the
[ad2ce4e]66fit:
67
[5ed76f8]68.. math::
69
[99ded31]70  R_i = (Y_i - \mathrm{theory}_i) / \mathrm{error}_i
71
72Think of each normalized residual as the number of standard deviations
73between the measured value and the theory.  For a good fit, 68% of $R_i$
74will be within one standard deviation, which will show up in the Residuals
75plot as $R_i$ values between $-1$ and $+1$.  Almost all the values should
76be between $-3$ and $+3$.
[ad2ce4e]77
[99ded31]78Residuals values larger than $\pm 3$ indicate that the model
79is not fit correctly, the wrong model was chosen (e.g., because there is
80more than one phase in your system), or there are problems in
81the data reduction.  Since the goodness of fit is calculated from the
82sum-squared residuals, these extreme values will drive the choice of fit
83parameters.  Any uncertainties calculated for the fitting parameters will
84be meaningless.
[ad2ce4e]85
86.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
87
[99ded31]88*Document History*
89
90| 2015-06-08 Steve King
91| 2017-09-28 Paul Kienzle
Note: See TracBrowser for help on using the repository browser.