[65dfa99] | 1 | .. residuals_help.rst |
---|
| 2 | |
---|
| 3 | .. |chi| unicode:: U+03C7 |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 7 | |
---|
| 8 | .. _Assessing_Fit_Quality: |
---|
| 9 | |
---|
| 10 | Assessing Fit Quality |
---|
| 11 | --------------------- |
---|
| 12 | |
---|
| 13 | When performing model-fits to some experimental data it is helpful to be able to |
---|
| 14 | gauge how good an individual fit is, how it compares to a fit of the *same model* |
---|
| 15 | *to another set of data*, or how it compares to a fit of a *different model to the* |
---|
| 16 | *same data*. |
---|
| 17 | |
---|
| 18 | One way is obviously to just inspect the graph of the experimental data and to |
---|
| 19 | see how closely (or not!) the 'theory' calculation matches it. But *SasView* |
---|
| 20 | also provides two other measures of the quality of a fit: |
---|
| 21 | |
---|
| 22 | * |chi|\ :sup:`2` (or 'Chi2'; pronounced 'chi-squared') |
---|
| 23 | * *Residuals* |
---|
| 24 | |
---|
| 25 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 26 | |
---|
| 27 | Chi2 |
---|
| 28 | ^^^^ |
---|
| 29 | |
---|
| 30 | Chi2 is a statistical parameter that quantifies the differences between an observed |
---|
| 31 | data set and an expected dataset (or 'theory'). |
---|
| 32 | |
---|
| 33 | *SasView* actually returns this parameter normalized to the number of data points, |
---|
| 34 | *Npts* such that |
---|
| 35 | |
---|
| 36 | *Chi2/Npts* = { SUM[(*Y_i* - *Y_theory_i*)^2 / (*Y_error_i*)^2] } / *Npts* |
---|
| 37 | |
---|
| 38 | This differs slightly from what is sometimes called the 'reduced chi-squared' |
---|
| 39 | because it does not take into account the number of fitting parameters (to |
---|
| 40 | calculate the number of 'degrees of freedom'), but the 'normalized chi-squared' |
---|
| 41 | and the 'reduced chi-squared' are very close to each other when *Npts* >> number of |
---|
| 42 | parameters. |
---|
| 43 | |
---|
| 44 | For a good fit, *Chi2/Npts* tends to 0. |
---|
| 45 | |
---|
| 46 | *Chi2/Npts* is sometimes referred to as the 'goodness-of-fit' parameter. |
---|
| 47 | |
---|
| 48 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 49 | |
---|
| 50 | Residuals |
---|
| 51 | ^^^^^^^^^ |
---|
| 52 | |
---|
| 53 | A residual is the difference between an observed value and an estimate of that |
---|
| 54 | value, such as a 'theory' calculation (whereas the difference between an observed |
---|
| 55 | value and its *true* value is its error). |
---|
| 56 | |
---|
| 57 | *SasView* calculates 'normalized residuals', *R_i*, for each data point in the |
---|
| 58 | fit: |
---|
| 59 | |
---|
| 60 | *R_i* = (*Y_i* - *Y_theory_i*) / (*Y_err_i*) |
---|
| 61 | |
---|
| 62 | For a good fit, *R_i* ~ 0. |
---|
| 63 | |
---|
| 64 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 65 | |
---|
| 66 | .. note:: This help document was last changed by Steve King, 08Jun2015 |
---|