source: sasview/src/sas/sasgui/perspectives/fitting/media/plugin.rst @ 9e308a3

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalcmagnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 9e308a3 was c5cfb20, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

Merge branch 'master' into ticket-639-katex

  • Property mode set to 100644
File size: 40.6 KB
RevLine 
[05829fb]1.. _Writing_a_Plugin:
2
[7f23423]3Writing a Plugin Model
4======================
[05829fb]5
[b2a3814]6.. note:: If some code blocks are not readable, expand the documentation window
7
[7e6bdf9]8Introduction
9^^^^^^^^^^^^
10
[3e1c9e5]11There are essentially three ways to generate new fitting models for SasView:
[7e6bdf9]12
[af6de50]13* Using the SasView :ref:`New_Plugin_Model` helper dialog (best for beginners
14  and/or relatively simple models)
15* By copying/editing an existing model (this can include models generated by
16  the *New Plugin Model* dialog) in the :ref:`Python_shell` or
17  :ref:`Advanced_Plugin_Editor` as described below (suitable for all use cases)
18* By writing a model from scratch outside of SasView (only recommended for
19  code monkeys!)
[7e6bdf9]20
[c56d9d74]21**What follows below is quite technical. If you just want a helping hand to get
[e081946]22started creating your own models see** :ref:`Adding_your_own_models`.
[f485ba0]23
[7f23423]24Overview
25^^^^^^^^
26
[7e6bdf9]27If you write your own model and save it to the the SasView *plugin_models* folder
[05829fb]28
[3e1c9e5]29  *C:\\Users\\{username}\\.sasview\\plugin_models* (on Windows)
[05829fb]30
[7e6bdf9]31the next time SasView is started it will compile the plugin and add
[5295cf5]32it to the list of *Plugin Models* in a FitPage.
[05829fb]33
[3e1c9e5]34SasView models can be of three types:
[05829fb]35
[3e1c9e5]36- A pure python model : Example -
[05829fb]37  `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_
[3e1c9e5]38- A python model with embedded C : Example -
[05829fb]39  `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_
[3e1c9e5]40- A python wrapper with separate C code : Example -
[05829fb]41  `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_,
42  `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_
43
[3d164b9]44The built-in modules are available in the *sasmodels-data\\models* subdirectory
[7f23423]45of your SasView installation folder.  On Windows, this will be something like
46*C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*.  On Mac OSX, these will be within
[05829fb]47the application bundle as
48*/Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*.
49
[7f23423]50Other models are available for download from our
[96f00a0]51`Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your own models to the
[7f23423]52Marketplace aswell.
53
[05829fb]54Create New Model Files
55^^^^^^^^^^^^^^^^^^^^^^
56
[3d164b9]57In the *~\\.sasview\\plugin_models* directory, copy the appropriate files
[7e6bdf9]58(we recommend using the examples above as templates) to mymodel.py (and mymodel.c, etc)
[05829fb]59as required, where "mymodel" is the name for the model you are creating.
60
61*Please follow these naming rules:*
62
[7f23423]63- No capitalization and thus no CamelCase
[3d164b9]64- If necessary use underscore to separate words (i.e. barbell not BarBell or
[05829fb]65  broad_peak not BroadPeak)
[907186d]66- Do not include "model" in the name (i.e. barbell not BarBellModel)
[05829fb]67
68
69Edit New Model Files
70^^^^^^^^^^^^^^^^^^^^
71
[7f23423]72Model Contents
73..............
74
[05829fb]75The model interface definition is in the .py file.  This file contains:
76
77- a **model name**:
78   - this is the **name** string in the *.py* file
79   - titles should be:
80
81    - all in *lower* case
82    - without spaces (use underscores to separate words instead)
83    - without any capitalization or CamelCase
[7f23423]84    - without incorporating the word "model"
[96f00a0]85    - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*;
[05829fb]86      *barbell* **not** *BarBellModel*
87
88- a **model title**:
89   - this is the **title** string in the *.py* file
90   - this is a one or two line description of the model, which will appear
[7f23423]91     at the start of the model documentation and as a tooltip in the SasView GUI
[05829fb]92
93- a **short discription**:
94   - this is the **description** string in the *.py* file
95   - this is a medium length description which appears when you click
[7f23423]96     *Description* on the model FitPage
[05829fb]97
98- a **parameter table**:
99   - this will be auto-generated from the *parameters* in the *.py* file
100
101- a **long description**:
102   - this is ReStructuredText enclosed between the r""" and """ delimiters
103     at the top of the *.py* file
[7f23423]104   - what you write here is abstracted into the SasView help documentation
[96f00a0]105   - this is what other users will refer to when they want to know what your model does;
[7f23423]106     so please be helpful!
[05829fb]107
108- a **definition** of the model:
109   - as part of the **long description**
110
111- a **formula** defining the function the model calculates:
112   - as part of the **long description**
113
114- an **explanation of the parameters**:
115   - as part of the **long description**
116   - explaining how the symbols in the formula map to the model parameters
117
118- a **plot** of the function, with a **figure caption**:
[7f23423]119   - this is automatically generated from your default parameters
[05829fb]120
121- at least one **reference**:
122   - as part of the **long description**
123   - specifying where the reader can obtain more information about the model
124
125- the **name of the author**
126   - as part of the **long description**
127   - the *.py* file should also contain a comment identifying *who*
128     converted/created the model file
129
[96f00a0]130Models that do not conform to these requirements will *never* be incorporated
[3d164b9]131into the built-in library.
132
[05829fb]133More complete documentation for the sasmodels package can be found at
134`<http://www.sasview.org/sasmodels>`_. In particular,
135`<http://www.sasview.org/sasmodels/api/generate.html#module-sasmodels.generate>`_
136describes the structure of a model.
137
138
139Model Documentation
140...................
141
142The *.py* file starts with an r (for raw) and three sets of quotes
143to start the doc string and ends with a second set of three quotes.
144For example::
145
146    r"""
147    Definition
148    ----------
149
150    The 1D scattering intensity of the sphere is calculated in the following
151    way (Guinier, 1955)
152
153    .. math::
154
155        I(q) = \frac{\text{scale}}{V} \cdot \left[
156            3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
157            \right]^2 + \text{background}
158
159    where *scale* is a volume fraction, $V$ is the volume of the scatterer,
160    $r$ is the radius of the sphere and *background* is the background level.
161    *sld* and *sld_solvent* are the scattering length densities (SLDs) of the
162    scatterer and the solvent respectively, whose difference is $\Delta\rho$.
163
164    You can included figures in your documentation, as in the following
165    figure for the cylinder model.
166
167    .. figure:: img/cylinder_angle_definition.jpg
168
169        Definition of the angles for oriented cylinders.
170
171    References
172    ----------
173
174    A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*,
175    John Wiley and Sons, New York, (1955)
176    """
177
178This is where the FULL documentation for the model goes (to be picked up by
179the automatic documentation system).  Although it feels odd, you
180should start the documentation immediately with the **definition**---the model
181name, a brief description and the parameter table are automatically inserted
182above the definition, and the a plot of the model is automatically inserted
183before the **reference**.
184
185Figures can be included using the *figure* command, with the name
186of the *.png* file containing the figure and a caption to appear below the
187figure.  Figure numbers will be added automatically.
188
189See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
190for a quick guide to the documentation layout commands, or the
191`Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for
192complete details.
193
194The model should include a **formula** written using LaTeX markup.
[7f23423]195The example above uses the *math* command to make a displayed equation.  You
[05829fb]196can also use *\$formula\$* for an inline formula. This is handy for defining
197the relationship between the model parameters and formula variables, such
198as the phrase "\$r\$ is the radius" used above.  The live demo MathJax
199page `<http://www.mathjax.org/>`_ is handy for checking that the equations
[7f23423]200will look like you intend.
[05829fb]201
202Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
203package for aligning equations (see amsldoc.pdf on that page for complete documentation).
204You will automatically be in an aligned environment, with blank lines separating
205the lines of the equation.  Place an ampersand before the operator on which to
206align.  For example::
207
208    .. math::
209
210      x + y &= 1 \\
211      y &= x - 1
212
213produces
214
215.. math::
216
217      x + y &= 1 \\
218      y &= x - 1
219
220If you need more control, use::
221
222    .. math::
223        :nowrap:
224
225
226Model Definition
227................
228
229Following the documentation string, there are a series of definitions::
230
231    name = "sphere"  # optional: defaults to the filename without .py
[7f23423]232
[05829fb]233    title = "Spheres with uniform scattering length density"
[7f23423]234
[05829fb]235    description = """\
236    P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
237                    /(qr)^3]^2 + background
238        r: radius of sphere
239        V: The volume of the scatter
240        sld: the SLD of the sphere
241        sld_solvent: the SLD of the solvent
242    """
[7f23423]243
[05829fb]244    category = "shape:sphere"
[7f23423]245
[05829fb]246    single = True   # optional: defaults to True
[7f23423]247
[05829fb]248    opencl = False  # optional: defaults to False
[7f23423]249
[05829fb]250    structure_factor = False  # optional: defaults to False
251
252**name = "mymodel"** defines the name of the model that is shown to the user.
253If it is not provided, it will use the name of the model file, with '_'
254replaced by spaces and the parts capitalized.  So *adsorbed_layer.py* will
255become *Adsorbed Layer*.  The predefined models all use the name of the
256model file as the name of the model, so the default may be changed.
257
258**title = "short description"** is short description of the model which
259is included after the model name in the automatically generated documentation.
[7f23423]260The title can also be used for a tooltip.
[05829fb]261
262**description = """doc string"""** is a longer description of the model. It
[7f23423]263shows up when you press the "Description" button of the SasView FitPage.
[05829fb]264It should give a brief description of the equation and the parameters
265without the need to read the entire model documentation. The triple quotes
266allow you to write the description over multiple lines. Keep the lines
267short since the GUI will wrap each one separately if they are too long.
[7f23423]268**Make sure the parameter names in the description match the model definition!**
[05829fb]269
270**category = "shape:sphere"** defines where the model will appear in the
271model documentation.  In this example, the model will appear alphabetically
[7f23423]272in the list of spheroid models in the *Shape* category.
[05829fb]273
274**single = True** indicates that the model can be run using single
275precision floating point values.  Set it to False if the numerical
276calculation for the model is unstable, which is the case for about 20 of
277the built in models.  It is worthwhile modifying the calculation to support
278single precision, allowing models to run up to 10 times faster.  The
279section `Test_Your_New_Model`_  describes how to compare model values for
280single vs. double precision so you can decide if you need to set
281single to False.
282
283**opencl = False** indicates that the model should not be run using OpenCL.
284This may be because the model definition includes code that cannot be
285compiled for the GPU (for example, goto statements).  It can also be used
286for large models which can't run on most GPUs.  This flag has not been
287used on any of the built in models; models which were failing were
288streamlined so this flag was not necessary.
289
290**structure_factor = True** indicates that the model can be used as a
291structure factor to account for interactions between particles.  See
292`Form_Factors`_ for more details.
293
294Model Parameters
295................
296
297Next comes the parameter table.  For example::
298
299    # pylint: disable=bad-whitespace, line-too-long
300    #   ["name",        "units", default, [min, max], "type",    "description"],
301    parameters = [
302        ["sld",         "1e-6/Ang^2",  1, [-inf, inf], "sld",    "Layer scattering length density"],
303        ["sld_solvent", "1e-6/Ang^2",  6, [-inf, inf], "sld",    "Solvent scattering length density"],
304        ["radius",      "Ang",        50, [0, inf],    "volume", "Sphere radius"],
305    ]
[31d7803]306    # pylint: enable=bad-whitespace, line-too-long
[05829fb]307
308**parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]**
[7f23423]309defines the parameters that form the model.
[05829fb]310
[96f00a0]311**Note: The order of the parameters in the definition will be the order of the
312parameters in the user interface and the order of the parameters in Iq(),
313Iqxy() and form_volume(). And** *scale* **and** *background* **parameters are
[7f23423]314implicit to all models, so they do not need to be included in the parameter table.**
[05829fb]315
[7f23423]316- **"name"** is the name of the parameter shown on the FitPage.
[05829fb]317
318  - parameter names should follow the mathematical convention; e.g.,
[7f23423]319    *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*.
320
[05829fb]321  - model parameter names should be consistent between different models,
322    so *sld_solvent*, for example, should have exactly the same name
[7f23423]323    in every model.
324
[05829fb]325  - to see all the parameter names currently in use, type the following in the
326    python shell/editor under the Tools menu::
327
328       import sasmodels.list_pars
329       sasmodels.list_pars.list_pars()
330
331    *re-use* as many as possible!!!
[7f23423]332
[05829fb]333  - use "name[n]" for multiplicity parameters, where *n* is the name of
334    the parameter defining the number of shells/layers/segments, etc.
335
336- **"units"** are displayed along with the parameter name
337
[7f23423]338  - every parameter should have units; use "None" if there are no units.
339
[05829fb]340  - **sld's should be given in units of 1e-6/Ang^2, and not simply
341    1/Ang^2 to be consistent with the builtin models.  Adjust your formulas
342    appropriately.**
[7f23423]343
[05829fb]344  - fancy units markup is available for some units, including::
345
346        Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2
347
348  - the list of units is defined in the variable *RST_UNITS* within
349    `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_
350
351    - new units can be added using the macros defined in *doc/rst_prolog*
352      in the sasmodels source.
353    - units should be properly formatted using sub-/super-scripts
354      and using negative exponents instead of the / operator, though
355      the unit name should use the / operator for consistency.
[7f23423]356    - please post a message to the SasView developers mailing list with your changes.
[05829fb]357
[7f23423]358- **default** is the initial value for the parameter.
[05829fb]359
360  - **the parameter default values are used to auto-generate a plot of
361    the model function in the documentation.**
362
[7f23423]363- **[min, max]** are the lower and upper limits on the parameter.
364
365  - lower and upper limits can be any number, or *-inf* or *inf*.
[05829fb]366
367  - the limits will show up as the default limits for the fit making it easy,
368    for example, to force the radius to always be greater than zero.
369
[984f3fc]370  - these are hard limits defining the valid range of parameter values;
371    polydisperity distributions will be truncated at the limits.
372
[7f23423]373- **"type"** can be one of: "", "sld", "volume", or "orientation".
[05829fb]374
375  - "sld" parameters can have magnetic moments when fitting magnetic models;
376    depending on the spin polarization of the beam and the $q$ value being
377    examined, the effective sld for that material will be used to compute the
[7f23423]378    scattered intensity.
379
[05829fb]380  - "volume" parameters are passed to Iq(), Iqxy(), and form_volume(), and
381    have polydispersity loops generated automatically.
[7f23423]382
[05829fb]383  - "orientation" parameters are only passed to Iqxy(), and have angular
384    dispersion.
385
386
387Model Computation
388.................
389
390Models can be defined as pure python models, or they can be a mixture of
391python and C models.  C models are run on the GPU if it is available,
392otherwise they are compiled and run on the CPU.
393
394Models are defined by the scattering kernel, which takes a set of parameter
395values defining the shape, orientation and material, and returns the
396expected scattering. Polydispersity and angular dispersion are defined
397by the computational infrastructure.  Any parameters defined as "volume"
398parameters are polydisperse, with polydispersity defined in proportion
399to their value.  "orientation" parameters use angular dispersion defined
400in degrees, and are not relative to the current angle.
401
402Based on a weighting function $G(x)$ and a number of points $n$, the
403computed value is
404
405.. math::
406
407     \hat I(q)
408     = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx}
409     \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)}
410
411That is, the indivdual models do not need to include polydispersity
412calculations, but instead rely on numerical integration to compute the
413appropriately smeared pattern.   Angular dispersion values over polar angle
414$\theta$ requires an additional $\cos \theta$ weighting due to decreased
415arc length for the equatorial angle $\phi$ with increasing latitude.
416
417Python Models
418.............
419
[7f23423]420For pure python models, define the *Iq* function::
[05829fb]421
422      import numpy as np
423      from numpy import cos, sin, ...
424
425      def Iq(q, par1, par2, ...):
426          return I(q, par1, par2, ...)
427      Iq.vectorized = True
428
429The parameters *par1, par2, ...* are the list of non-orientation parameters
430to the model in the order that they appear in the parameter table.
[7f23423]431**Note that the autogenerated model file uses** *x* **rather than** *q*.
[05829fb]432
433The *.py* file should import trigonometric and exponential functions from
[7f23423]434numpy rather than from math.  This lets us evaluate the model for the whole
[05829fb]435range of $q$ values at once rather than looping over each $q$ separately in
436python.  With $q$ as a vector, you cannot use if statements, but must instead
437do tricks like
438
439::
440
441     a = x*q*(q>0) + y*q*(q<=0)
442
443or
444
445::
446
447     a = np.empty_like(q)
448     index = q>0
449     a[index] = x*q[index]
450     a[~index] = y*q[~index]
451
452which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$
453is zero or negative. If you have not converted your function to use $q$
454vectors, you can set the following and it will only receive one $q$
455value at a time::
456
457    Iq.vectorized = False
458
459Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in
460barbell).  If I(q; pars) is NaN for any $q$, then those parameters will be
461ignored, and not included in the calculation of the weighted polydispersity.
462
463Similar to *Iq*, you can define *Iqxy(qx, qy, par1, par2, ...)* where the
464parameter list includes any orientation parameters.  If *Iqxy* is not defined,
465then it will default to *Iqxy = Iq(sqrt(qx**2+qy**2), par1, par2, ...)*.
466
467Models should define *form_volume(par1, par2, ...)* where the parameter
468list includes the *volume* parameters in order.  This is used for a weighted
469volume normalization so that scattering is on an absolute scale.  If
[7f23423]470*form_volume* is not defined, then the default *form_volume = 1.0* will be
[05829fb]471used.
472
473Embedded C Models
474.................
475
[7f23423]476Like pure python models, inline C models need to define an *Iq* function::
[05829fb]477
478    Iq = """
479        return I(q, par1, par2, ...);
480    """
481
482This expands into the equivalent C code::
483
484    #include <math.h>
485    double Iq(double q, double par1, double par2, ...);
486    double Iq(double q, double par1, double par2, ...)
487    {
488        return I(q, par1, par2, ...);
489    }
490
[af6de50]491*Iqxy* is similar to *Iq*, except it uses parameters *qx, qy* instead of *q*,
492and it includes orientation parameters.
493
[96f00a0]494*form_volume* defines the volume of the shape. As in python models, it
[af6de50]495includes only the volume parameters.
496
497*Iqxy* will default to *Iq(sqrt(qx**2 + qy**2), par1, ...)* and
498*form_volume* will default to 1.0.
499
500**source=['fn.c', ...]** includes the listed C source files in the
501program before *Iq* and *Iqxy* are defined. This allows you to extend the
502library of C functions available to your model.
503
504Models are defined using double precision declarations for the
505parameters and return values.  When a model is run using single
506precision or long double precision, each variable is converted
507to the target type, depending on the precision requested.
508
509**Floating point constants must include the decimal point.**  This allows us
510to convert values such as 1.0 (double precision) to 1.0f (single precision)
511so that expressions that use these values are not promoted to double precision
512expressions.  Some graphics card drivers are confused when functions
513that expect floating point values are passed integers, such as 4*atan(1); it
514is safest to not use integers in floating point expressions.  Even better,
515use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller!
516
[05829fb]517The C model operates on a single $q$ value at a time.  The code will be
518run in parallel across different $q$ values, either on the graphics card
519or the processor.
520
521Rather than returning NAN from Iq, you must define the *INVALID(v)*.  The
522*v* parameter lets you access all the parameters in the model using
523*v.par1*, *v.par2*, etc. For example::
524
525    #define INVALID(v) (v.bell_radius < v.radius)
526
[af6de50]527Special Functions
528.................
[05829fb]529
[af6de50]530The C code follows the C99 standard, with the usual math functions,
[05829fb]531as defined in
532`OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_.
[af6de50]533This includes the following:
534
535    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E:
536        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$
537    exp, log, pow(x,y), expm1, sqrt:
538        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$.
539        The function expm1(x) is accurate across all $x$, including $x$
540        very close to zero.
541    sin, cos, tan, asin, acos, atan:
542        Trigonometry functions and inverses, operating on radians.
[72100ee]543    sinh, cosh, tanh, asinh, acosh, atanh:
[af6de50]544        Hyperbolic trigonometry functions.
545    atan2(y,x):
546        Angle from the $x$\ -axis to the point $(x,y)$, which is equal to
547        $\tan^{-1}(y/x)$ corrected for quadrant.  That is, if $x$ and $y$ are
548        both negative, then atan2(y,x) returns a value in quadrant III where
549        atan(y/x) would return a value in quadrant I. Similarly for
550        quadrants II and IV when $x$ and $y$ have opposite sign.
551    fmin(x,y), fmax(x,y), trunc, rint:
552        Floating point functions.  rint(x) returns the nearest integer.
553    NAN:
554        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that
555        you cannot use :code:`x == NAN` to test for NaN values since that
556        will always return false.  NAN does not equal NAN!
557    INFINITY:
558        $\infty, 1/0$.  Use isinf(x) to test for infinity, or isfinite(x)
559        to test for finite and not NaN.
560    erf, erfc, tgamma, lgamma:  **do not use**
561        Special functions that should be part of the standard, but are missing
562        or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma
563        instead (see below). Note: lgamma(x) has not yet been tested.
564
565Some non-standard constants and functions are also provided:
566
567    M_PI_180, M_4PI_3:
[ca1eaeb]568        $\frac{\pi}{180}$, $\frac{4\pi}{3}$
[af6de50]569    SINCOS(x, s, c):
570        Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s*
571        must be declared first.
572    square(x):
573        $x^2$
574    cube(x):
575        $x^3$
[ca6cbc1c]576    sas_sinx_x(x):
[af6de50]577        $\sin(x)/x$, with limit $\sin(0)/0 = 1$.
578    powr(x, y):
579        $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs.
580    pown(x, n):
581        $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs.
582    FLOAT_SIZE:
583        The number of bytes in a floating point value.  Even though all
584        variables are declared double, they may be converted to single
585        precision float before running. If your algorithm depends on
586        precision (which is not uncommon for numerical algorithms), use
587        the following::
588
589            #if FLOAT_SIZE>4
590            ... code for double precision ...
591            #else
592            ... code for single precision ...
593            #endif
594    SAS_DOUBLE:
595        A replacement for :code:`double` so that the declared variable will
596        stay double precision; this should generally not be used since some
597        graphics cards do not support double precision.  There is no provision
598        for forcing a constant to stay double precision.
599
600The following special functions and scattering calculations are defined in
601`sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_.
[05829fb]602These functions have been tuned to be fast and numerically stable down
603to $q=0$ even in single precision.  In some cases they work around bugs
[ca1eaeb]604which appear on some platforms but not others, so use them where needed.
605Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py*
606file in the order given, otherwise these functions will not be available.
[05829fb]607
[af6de50]608    polevl(x, c, n):
[ca1eaeb]609        Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's
[af6de50]610        method so it is faster and more accurate.
[7f23423]611
[ca1eaeb]612        $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients,
613        sorted from highest to lowest.
[48cd5b3]614
[ca1eaeb]615        :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
[48cd5b3]616
617    p1evl(x, c, n):
[ca1eaeb]618        Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$
619        using Horner's method so it is faster and more accurate.
[48cd5b3]620
[ca1eaeb]621        $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients,
622        sorted from highest to lowest.
[48cd5b3]623
[af6de50]624        :code:`source = ["lib/polevl.c", ...]`
[48cd5b3]625        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
[af6de50]626
[48cd5b3]627    sas_gamma(x):
[96f00a0]628        Gamma function sas_gamma\ $(x) = \Gamma(x)$.
[48cd5b3]629
[ca1eaeb]630        The standard math function, tgamma(x) is unstable for $x < 1$
631        on some platforms.
[af6de50]632
633        :code:`source = ["lib/sasgamma.c", ...]`
[48cd5b3]634        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_)
[af6de50]635
[48cd5b3]636    sas_erf(x), sas_erfc(x):
[af6de50]637        Error function
[96f00a0]638        sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$
[af6de50]639        and complementary error function
[96f00a0]640        sas_erfc $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$.
[48cd5b3]641
[ca1eaeb]642        The standard math functions erf(x) and erfc(x) are slower and broken
[af6de50]643        on some platforms.
644
645        :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]`
[48cd5b3]646        (`link to error functions' code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_)
[af6de50]647
[48cd5b3]648    sas_J0(x):
[96f00a0]649        Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where
[af6de50]650        $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$.
651
[ca1eaeb]652        The standard math function j0(x) is not available on all platforms.
653
[af6de50]654        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]`
[48cd5b3]655        (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_)
[af6de50]656
[48cd5b3]657    sas_J1(x):
[96f00a0]658        Bessel function of the first kind  sas_J1\ $(x)=J_1(x)$ where
[af6de50]659        $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$.
660
[ca1eaeb]661        The standard math function j1(x) is not available on all platforms.
662
[af6de50]663        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[48cd5b3]664        (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[af6de50]665
[48cd5b3]666    sas_JN(n, x):
[ca1eaeb]667        Bessel function of the first kind and integer order $n$:
[96f00a0]668        sas_JN\ $(n, x)=J_n(x)$ where
[af6de50]669        $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$.
[48cd5b3]670        If $n$ = 0 or 1, it uses sas_J0(x) or sas_J1(x), respectively.
671
[ca1eaeb]672        The standard math function jn(n, x) is not available on all platforms.
673
[af6de50]674        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]`
[48cd5b3]675        (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_)
[af6de50]676
[ca6cbc1c]677    sas_Si(x):
[96f00a0]678        Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$.
[af6de50]679
[48cd5b3]680        This function uses Taylor series for small and large arguments:
681
682        For large arguments,
683
684        .. math::
[af6de50]685
[ca1eaeb]686             \text{Si}(x) \sim \frac{\pi}{2}
687             - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right)
688             - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right)
[48cd5b3]689
690        For small arguments,
691
692        .. math::
693
[ca1eaeb]694           \text{Si}(x) \sim x
695           - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!}
[48cd5b3]696           + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!}
697
698        :code:`source = ["lib/Si.c", ...]`
699        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/Si.c>`_)
700
[ca6cbc1c]701    sas_3j1x_x(x):
[af6de50]702        Spherical Bessel form
[96f00a0]703        sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$,
[ca1eaeb]704        with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical
705        Bessel function of the first kind and first order.
[48cd5b3]706
707        This function uses a Taylor series for small $x$ for numerical accuracy.
[af6de50]708
[ca6cbc1c]709        :code:`source = ["lib/sas_3j1x_x.c", ...]`
710        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_)
[af6de50]711
[48cd5b3]712
[ca6cbc1c]713    sas_2J1x_x(x):
[96f00a0]714        Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value
[ca1eaeb]715        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind
716        and first order.
[af6de50]717
[20cfa23]718        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[48cd5b3]719        (`link to Bessel form's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
720
[af6de50]721
[48cd5b3]722    Gauss76Z[i], Gauss76Wt[i]:
723        Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively,
[ca1eaeb]724        computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$.
[af6de50]725
[48cd5b3]726        Similar arrays are available in :code:`gauss20.c` for 20-point
727        quadrature and in :code:`gauss150.c` for 150-point quadrature.
728
729        :code:`source = ["lib/gauss76.c", ...]`
730        (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_)
731
732
[af6de50]733
734Problems with C models
735......................
736
737The graphics processor (GPU) in your computer is a specialized computer tuned
738for certain kinds of problems.  This leads to strange restrictions that you
739need to be aware of.  Your code may work fine on some platforms or for some
740models, but then return bad values on other platforms.  Some examples of
741particular problems:
742
[907186d]743  **(1) Code is too complex, or uses too much memory.**  GPU devices only have a
[af6de50]744  limited amount of memory available for each processor.  If you run programs
745  which take too much memory, then rather than running multiple values in parallel
746  as it usually does, the GPU may only run a single version of the code at a
747  time, making it slower than running on the CPU.  It may fail to run on
748  some platforms, or worse, cause the screen to go blank or the system to reboot.
[05829fb]749
[907186d]750  **(2) Code takes too long.**  Because GPU devices are used for the computer
[af6de50]751  display, the OpenCL drivers are very careful about the amount of time they
752  will allow any code to run.  For example, on OS X, the model will stop running
[907186d]753  after 5 seconds regardless of whether the computation is complete.  You may end up
754  with only some of your 2D array defined, with the rest containing random
[af6de50]755  data. Or it may cause the screen to go blank or the system to reboot.
[05829fb]756
[907186d]757  **(3) Memory is not aligned**.  The GPU hardware is specialized to operate on
758  multiple values simultaneously.  To keep the GPU simple the values in memory
[af6de50]759  must be aligned with the different GPU compute engines.  Not following these
760  rules can lead to unexpected values being loaded into memory, and wrong answers
761  computed.  The conclusion from a very long and strange debugging session was
762  that any arrays that you declare in your model should be a multiple of four.
[907186d]763  For example::
[05829fb]764
[af6de50]765      double Iq(q, p1, p2, ...)
766      {
767          double vector[8];  // Only going to use seven slots, but declare 8
768          ...
769      }
[05829fb]770
[af6de50]771The first step when your model is behaving strangely is to set **single=False**.
[907186d]772This automatically restricts the model to only run on the CPU, or on high-end
773GPU cards.  There can still be problems even on high-end cards, so you can force
[af6de50]774the model off the GPU by setting **opencl=False**.  This runs the model
775as a normal C program without any GPU restrictions so you know that
776strange results are probably from your code rather than the environment.  Once
777the code is debugged, you can compare your output to the output on the GPU.
778
779Although it can be difficult to get your model to work on the GPU, the reward
780can be a model that runs 1000x faster on a good card.  Even your laptop may
781show a 50x improvement or more over the equivalent pure python model.
[05829fb]782
783External C Models
784.................
785
786External C models are very much like embedded C models, except that
787*Iq*, *Iqxy* and *form_volume* are defined in an external source file
[af6de50]788loaded using the *source=[...]* statement. You need to supply the function
[05829fb]789declarations for each of these that you need instead of building them
790automatically from the parameter table.
791
792
793.. _Form_Factors:
794
795Form Factors
796............
797
798Away from the dilute limit you can estimate scattering including
799particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$
800is the form factor and $S(q)$ is the structure factor.  The simplest
801structure factor is the *hardsphere* interaction, which
802uses the effective radius of the form factor as an input to the structure
803factor model.  The effective radius is the average radius of the
804form averaged over all the polydispersity values.
805
[31d7803]806::
807
808    def ER(radius, thickness):
809        """Effective radius of a core-shell sphere."""
810        return radius + thickness
811
812Now consider the *core_shell_sphere*, which has a simple effective radius
[05829fb]813equal to the radius of the core plus the thickness of the shell, as
814shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and
815*(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh
816grid covering all possible combinations of radius and thickness.
817That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)*
818and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*.
819The *ER* function returns one effective radius for each combination.
820The effective radius calculator weights each of these according to
821the polydispersity distributions and calls the structure factor
822with the average *ER*.
823
824::
825
826    def VR(radius, thickness):
827        """Sphere and shell volumes for a core-shell sphere."""
828        whole = 4.0/3.0 * pi * (radius + thickness)**3
829        core = 4.0/3.0 * pi * radius**3
830        return whole, whole - core
831
832Core-shell type models have an additional volume ratio which scales
833the structure factor.  The *VR* function returns the volume of
834the whole sphere and the volume of the shell. Like *ER*, there is
835one return value for each point in the mesh grid.
836
[96f00a0]837*NOTE: we may be removing or modifying this feature soon. As of the
[31d7803]838time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume
839ratio of 1.0.*
[05829fb]840
841Unit Tests
842..........
843
844THESE ARE VERY IMPORTANT. Include at least one test for each model and
845PLEASE make sure that the answer value is correct (i.e. not a random number).
846
847::
848
849    tests = [
850        [{}, 0.2, 0.726362],
851        [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
852          "radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
853         0.2, 0.228843],
854        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.],
855        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.],
856    ]
857
858
859**tests=[[{parameters}, q, result], ...]** is a list of lists.
860Each list is one test and contains, in order:
861
862- a dictionary of parameter values. This can be {} using the default
863  parameters, or filled with some parameters that will be different
[cbbb6a4]864  from the default, such as {‘radius’:10.0, ‘sld’:4}. Unlisted parameters
[05829fb]865  will be given the default values.
866- the input $q$ value or tuple of $(q_x, q_y)$ values.
867- the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters
868  and input value given.
869- input and output values can themselves be lists if you have several
870  $q$ values to test for the same model parameters.
871- for testing *ER* and *VR*, give the inputs as "ER" and "VR" respectively;
872  the output for *VR* should be the sphere/shell ratio, not the individual
873  sphere and shell values.
874
875.. _Test_Your_New_Model:
876
877Test Your New Model
878^^^^^^^^^^^^^^^^^^^
879
[3e1c9e5]880Minimal Testing
881...............
[e925f61]882
[96f00a0]883Either open the :ref:`Python_shell` (*Tools* > *Python Shell/Editor*) or the :ref:`Advanced_Plugin_Editor` (*Fitting* > *Plugin Model Operations* > *Advanced
884Plugin Editor*), load your model, and then select *Run > Check Model* from the
[3e1c9e5]885menu bar.
[05829fb]886
[96f00a0]887An *Info* box will appear with the results of the compilation and a check that
[3e1c9e5]888the model runs.
[e925f61]889
[3e1c9e5]890Recommended Testing
891...................
[e925f61]892
[05829fb]893If the model compiles and runs, you can next run the unit tests that
[31d7803]894you have added using the **test =** values. Switch to the *Shell* tab
[05829fb]895and type the following::
896
897    from sasmodels.model_test import run_one
898    run_one("~/.sasview/plugin_models/model.py")
899
900This should print::
901
902    test_model_python (sasmodels.model_test.ModelTestCase) ... ok
903
904To check whether single precision is good enough, type the following::
905
906    from sasmodels.compare import main
907    main("~/.sasview/plugin_models/model.py")
908
909This will pop up a plot showing the difference between single precision
910and double precision on a range of $q$ values.
911
912::
913
914  demo = dict(scale=1, background=0,
915              sld=6, sld_solvent=1,
916              radius=120,
917              radius_pd=.2, radius_pd_n=45)
918
919**demo={'par': value, ...}** in the model file sets the default values for
920the comparison. You can include polydispersity parameters such as
921*radius_pd=0.2, radius_pd_n=45* which would otherwise be zero.
922
923The options to compare are quite extensive; type the following for help::
924
925    main()
926
927Options will need to be passed as separate strings.
928For example to run your model with a random set of parameters::
929
930    main("-random", "-pars", "~/.sasview/plugin_models/model.py")
931
932For the random models,
933
[31d7803]934- *sld* will be in the range (-0.5,10.5),
935- angles (*theta, phi, psi*) will be in the range (-180,180),
936- angular dispersion will be in the range (0,45),
937- polydispersity will be in the range (0,1)
938- other values will be in the range (0, 2\ *v*), where *v* is the value of the parameter in demo.
[05829fb]939
[31d7803]940Dispersion parameters *n*\, *sigma* and *type* will be unchanged from demo so that
[05829fb]941run times are predictable.
942
943If your model has 2D orientational calculation, then you should also
944test with::
945
946    main("-2d", "~/.sasview/plugin_models/model.py")
947
948
[e925f61]949Clean Lint - (Developer Version Only)
950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[05829fb]951
[96f00a0]952**NB: For now we are not providing pylint with the installer version of SasView;
[e925f61]953so unless you have a SasView build environment available, you can ignore this section!**
[05829fb]954
955Run the lint check with::
956
957    python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py
958
959We are not aiming for zero lint just yet, only keeping it to a minimum.
960For now, don't worry too much about *invalid-name*. If you really want a
961variable name *Rg* for example because $R_g$ is the right name for the model
962parameter then ignore the lint errors.  Also, ignore *missing-docstring*
963for standard model functions *Iq*, *Iqxy*, etc.
964
[31d7803]965We will have delinting sessions at the SasView Code Camps, where we can
[05829fb]966decide on standards for model files, parameter names, etc.
967
[31d7803]968For now, you can tell pylint to ignore things.  For example, to align your
[05829fb]969parameters in blocks::
970
971    # pylint: disable=bad-whitespace,line-too-long
972    #   ["name",                  "units", default, [lower, upper], "type", "description"],
973    parameters = [
974        ["contrast_factor",       "barns",    10.0,  [-inf, inf], "", "Contrast factor of the polymer"],
975        ["bjerrum_length",        "Ang",       7.1,  [0, inf],    "", "Bjerrum length"],
976        ["virial_param",          "1/Ang^2",  12.0,  [-inf, inf], "", "Virial parameter"],
977        ["monomer_length",        "Ang",      10.0,  [0, inf],    "", "Monomer length"],
978        ["salt_concentration",    "mol/L",     0.0,  [-inf, inf], "", "Concentration of monovalent salt"],
979        ["ionization_degree",     "",          0.05, [0, inf],    "", "Degree of ionization"],
980        ["polymer_concentration", "mol/L",     0.7,  [0, inf],    "", "Polymer molar concentration"],
981        ]
982    # pylint: enable=bad-whitespace,line-too-long
983
984Don't put in too many pylint statements, though, since they make the code ugly.
985
[e925f61]986Check The Docs - (Developer Version Only)
987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[05829fb]988
989You can get a rough idea of how the documentation will look using the
990following::
991
992    from sasmodels.generate import view_html
993    view_html('~/.sasview/plugin_models/model.py')
994
995This does not use the same styling as the SasView docs, but it will allow
996you to check that your ReStructuredText and LaTeX formatting.  Here are
997some tools to help with the inevitable syntax errors:
998
999- `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
1000- `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_
1001- `MathJax <http://www.mathjax.org/>`_
1002- `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
1003
[31d7803]1004There is also a neat online WYSIWYG ReStructuredText editor at http://rst.ninjs.org\ .
1005
[e925f61]1006Share Your Model!
1007^^^^^^^^^^^^^^^^^
[05829fb]1008
1009Once compare and the unit test(s) pass properly and everything is done,
1010consider adding your model to the
[e925f61]1011`Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it!
[3e1c9e5]1012
1013.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
1014
[907186d]1015.. note::  This help document was last changed by Steve King, 25Oct2016
Note: See TracBrowser for help on using the repository browser.