[05829fb] | 1 | .. _Writing_a_Plugin: |
---|
| 2 | |
---|
[7f23423] | 3 | Writing a Plugin Model |
---|
| 4 | ====================== |
---|
[05829fb] | 5 | |
---|
[b2a3814] | 6 | .. note:: If some code blocks are not readable, expand the documentation window |
---|
| 7 | |
---|
[7e6bdf9] | 8 | Introduction |
---|
| 9 | ^^^^^^^^^^^^ |
---|
| 10 | |
---|
| 11 | There are currently two ways to add your own models to SasView: |
---|
| 12 | |
---|
| 13 | * Using the :ref:`Custom_Model_Editor` |
---|
| 14 | * By Writing a Plugin Model |
---|
| 15 | |
---|
| 16 | The Custom Model Editor lets you combine *existing* SasView library models. For anything more |
---|
| 17 | complex, or if you want to apply polydispersity to parameters, you will need to write a Plugin Model. |
---|
| 18 | |
---|
[7f23423] | 19 | Overview |
---|
| 20 | ^^^^^^^^ |
---|
| 21 | |
---|
[7e6bdf9] | 22 | If you write your own model and save it to the the SasView *plugin_models* folder |
---|
[05829fb] | 23 | |
---|
[7f23423] | 24 | *C:\\Users\\[username]\\.sasview\\plugin_models* (on Windows) |
---|
[05829fb] | 25 | |
---|
[7e6bdf9] | 26 | the next time SasView is started it will compile the plugin and add |
---|
| 27 | it to the list of *Customized Models* in a FitPage. |
---|
[05829fb] | 28 | |
---|
| 29 | SasView has three ways of writing models: |
---|
| 30 | |
---|
| 31 | - As a pure python model : Example - |
---|
| 32 | `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_ |
---|
| 33 | - As a python model with embedded C : Example - |
---|
| 34 | `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_ |
---|
| 35 | - As a python wrapper with separate C code : Example - |
---|
| 36 | `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_, |
---|
| 37 | `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_ |
---|
| 38 | |
---|
[3d164b9] | 39 | The built-in modules are available in the *sasmodels-data\\models* subdirectory |
---|
[7f23423] | 40 | of your SasView installation folder. On Windows, this will be something like |
---|
| 41 | *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*. On Mac OSX, these will be within |
---|
[05829fb] | 42 | the application bundle as |
---|
| 43 | */Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*. |
---|
| 44 | |
---|
[7f23423] | 45 | Other models are available for download from our |
---|
| 46 | `Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your own models to the |
---|
| 47 | Marketplace aswell. |
---|
| 48 | |
---|
[05829fb] | 49 | Create New Model Files |
---|
| 50 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 51 | |
---|
[3d164b9] | 52 | In the *~\\.sasview\\plugin_models* directory, copy the appropriate files |
---|
[7e6bdf9] | 53 | (we recommend using the examples above as templates) to mymodel.py (and mymodel.c, etc) |
---|
[05829fb] | 54 | as required, where "mymodel" is the name for the model you are creating. |
---|
| 55 | |
---|
| 56 | *Please follow these naming rules:* |
---|
| 57 | |
---|
[7f23423] | 58 | - No capitalization and thus no CamelCase |
---|
[3d164b9] | 59 | - If necessary use underscore to separate words (i.e. barbell not BarBell or |
---|
[05829fb] | 60 | broad_peak not BroadPeak) |
---|
[cbbb6a4] | 61 | - Do not include ââ¬Åmodelââ¬ï¿œ in the name (i.e. barbell not BarBellModel) |
---|
[05829fb] | 62 | |
---|
| 63 | |
---|
| 64 | Edit New Model Files |
---|
| 65 | ^^^^^^^^^^^^^^^^^^^^ |
---|
| 66 | |
---|
[7f23423] | 67 | Model Contents |
---|
| 68 | .............. |
---|
| 69 | |
---|
[05829fb] | 70 | The model interface definition is in the .py file. This file contains: |
---|
| 71 | |
---|
| 72 | - a **model name**: |
---|
| 73 | - this is the **name** string in the *.py* file |
---|
| 74 | - titles should be: |
---|
| 75 | |
---|
| 76 | - all in *lower* case |
---|
| 77 | - without spaces (use underscores to separate words instead) |
---|
| 78 | - without any capitalization or CamelCase |
---|
[7f23423] | 79 | - without incorporating the word "model" |
---|
[05829fb] | 80 | - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*; |
---|
| 81 | *barbell* **not** *BarBellModel* |
---|
| 82 | |
---|
| 83 | - a **model title**: |
---|
| 84 | - this is the **title** string in the *.py* file |
---|
| 85 | - this is a one or two line description of the model, which will appear |
---|
[7f23423] | 86 | at the start of the model documentation and as a tooltip in the SasView GUI |
---|
[05829fb] | 87 | |
---|
| 88 | - a **short discription**: |
---|
| 89 | - this is the **description** string in the *.py* file |
---|
| 90 | - this is a medium length description which appears when you click |
---|
[7f23423] | 91 | *Description* on the model FitPage |
---|
[05829fb] | 92 | |
---|
| 93 | - a **parameter table**: |
---|
| 94 | - this will be auto-generated from the *parameters* in the *.py* file |
---|
| 95 | |
---|
| 96 | - a **long description**: |
---|
| 97 | - this is ReStructuredText enclosed between the r""" and """ delimiters |
---|
| 98 | at the top of the *.py* file |
---|
[7f23423] | 99 | - what you write here is abstracted into the SasView help documentation |
---|
| 100 | - this is what other users will refer to when they want to know what your model does; |
---|
| 101 | so please be helpful! |
---|
[05829fb] | 102 | |
---|
| 103 | - a **definition** of the model: |
---|
| 104 | - as part of the **long description** |
---|
| 105 | |
---|
| 106 | - a **formula** defining the function the model calculates: |
---|
| 107 | - as part of the **long description** |
---|
| 108 | |
---|
| 109 | - an **explanation of the parameters**: |
---|
| 110 | - as part of the **long description** |
---|
| 111 | - explaining how the symbols in the formula map to the model parameters |
---|
| 112 | |
---|
| 113 | - a **plot** of the function, with a **figure caption**: |
---|
[7f23423] | 114 | - this is automatically generated from your default parameters |
---|
[05829fb] | 115 | |
---|
| 116 | - at least one **reference**: |
---|
| 117 | - as part of the **long description** |
---|
| 118 | - specifying where the reader can obtain more information about the model |
---|
| 119 | |
---|
| 120 | - the **name of the author** |
---|
| 121 | - as part of the **long description** |
---|
| 122 | - the *.py* file should also contain a comment identifying *who* |
---|
| 123 | converted/created the model file |
---|
| 124 | |
---|
[3d164b9] | 125 | Models that do not conform to these requirements will *never* be incorporated |
---|
| 126 | into the built-in library. |
---|
| 127 | |
---|
[05829fb] | 128 | More complete documentation for the sasmodels package can be found at |
---|
| 129 | `<http://www.sasview.org/sasmodels>`_. In particular, |
---|
| 130 | `<http://www.sasview.org/sasmodels/api/generate.html#module-sasmodels.generate>`_ |
---|
| 131 | describes the structure of a model. |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | Model Documentation |
---|
| 135 | ................... |
---|
| 136 | |
---|
| 137 | The *.py* file starts with an r (for raw) and three sets of quotes |
---|
| 138 | to start the doc string and ends with a second set of three quotes. |
---|
| 139 | For example:: |
---|
| 140 | |
---|
| 141 | r""" |
---|
| 142 | Definition |
---|
| 143 | ---------- |
---|
| 144 | |
---|
| 145 | The 1D scattering intensity of the sphere is calculated in the following |
---|
| 146 | way (Guinier, 1955) |
---|
| 147 | |
---|
| 148 | .. math:: |
---|
| 149 | |
---|
| 150 | I(q) = \frac{\text{scale}}{V} \cdot \left[ |
---|
| 151 | 3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3} |
---|
| 152 | \right]^2 + \text{background} |
---|
| 153 | |
---|
| 154 | where *scale* is a volume fraction, $V$ is the volume of the scatterer, |
---|
| 155 | $r$ is the radius of the sphere and *background* is the background level. |
---|
| 156 | *sld* and *sld_solvent* are the scattering length densities (SLDs) of the |
---|
| 157 | scatterer and the solvent respectively, whose difference is $\Delta\rho$. |
---|
| 158 | |
---|
| 159 | You can included figures in your documentation, as in the following |
---|
| 160 | figure for the cylinder model. |
---|
| 161 | |
---|
| 162 | .. figure:: img/cylinder_angle_definition.jpg |
---|
| 163 | |
---|
| 164 | Definition of the angles for oriented cylinders. |
---|
| 165 | |
---|
| 166 | References |
---|
| 167 | ---------- |
---|
| 168 | |
---|
| 169 | A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, |
---|
| 170 | John Wiley and Sons, New York, (1955) |
---|
| 171 | """ |
---|
| 172 | |
---|
| 173 | This is where the FULL documentation for the model goes (to be picked up by |
---|
| 174 | the automatic documentation system). Although it feels odd, you |
---|
| 175 | should start the documentation immediately with the **definition**---the model |
---|
| 176 | name, a brief description and the parameter table are automatically inserted |
---|
| 177 | above the definition, and the a plot of the model is automatically inserted |
---|
| 178 | before the **reference**. |
---|
| 179 | |
---|
| 180 | Figures can be included using the *figure* command, with the name |
---|
| 181 | of the *.png* file containing the figure and a caption to appear below the |
---|
| 182 | figure. Figure numbers will be added automatically. |
---|
| 183 | |
---|
| 184 | See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 185 | for a quick guide to the documentation layout commands, or the |
---|
| 186 | `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for |
---|
| 187 | complete details. |
---|
| 188 | |
---|
| 189 | The model should include a **formula** written using LaTeX markup. |
---|
[7f23423] | 190 | The example above uses the *math* command to make a displayed equation. You |
---|
[05829fb] | 191 | can also use *\$formula\$* for an inline formula. This is handy for defining |
---|
| 192 | the relationship between the model parameters and formula variables, such |
---|
| 193 | as the phrase "\$r\$ is the radius" used above. The live demo MathJax |
---|
| 194 | page `<http://www.mathjax.org/>`_ is handy for checking that the equations |
---|
[7f23423] | 195 | will look like you intend. |
---|
[05829fb] | 196 | |
---|
| 197 | Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 198 | package for aligning equations (see amsldoc.pdf on that page for complete documentation). |
---|
| 199 | You will automatically be in an aligned environment, with blank lines separating |
---|
| 200 | the lines of the equation. Place an ampersand before the operator on which to |
---|
| 201 | align. For example:: |
---|
| 202 | |
---|
| 203 | .. math:: |
---|
| 204 | |
---|
| 205 | x + y &= 1 \\ |
---|
| 206 | y &= x - 1 |
---|
| 207 | |
---|
| 208 | produces |
---|
| 209 | |
---|
| 210 | .. math:: |
---|
| 211 | |
---|
| 212 | x + y &= 1 \\ |
---|
| 213 | y &= x - 1 |
---|
| 214 | |
---|
| 215 | If you need more control, use:: |
---|
| 216 | |
---|
| 217 | .. math:: |
---|
| 218 | :nowrap: |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | Model Definition |
---|
| 222 | ................ |
---|
| 223 | |
---|
| 224 | Following the documentation string, there are a series of definitions:: |
---|
| 225 | |
---|
| 226 | name = "sphere" # optional: defaults to the filename without .py |
---|
[7f23423] | 227 | |
---|
[05829fb] | 228 | title = "Spheres with uniform scattering length density" |
---|
[7f23423] | 229 | |
---|
[05829fb] | 230 | description = """\ |
---|
| 231 | P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr)) |
---|
| 232 | /(qr)^3]^2 + background |
---|
| 233 | r: radius of sphere |
---|
| 234 | V: The volume of the scatter |
---|
| 235 | sld: the SLD of the sphere |
---|
| 236 | sld_solvent: the SLD of the solvent |
---|
| 237 | """ |
---|
[7f23423] | 238 | |
---|
[05829fb] | 239 | category = "shape:sphere" |
---|
[7f23423] | 240 | |
---|
[05829fb] | 241 | single = True # optional: defaults to True |
---|
[7f23423] | 242 | |
---|
[05829fb] | 243 | opencl = False # optional: defaults to False |
---|
[7f23423] | 244 | |
---|
[05829fb] | 245 | structure_factor = False # optional: defaults to False |
---|
| 246 | |
---|
| 247 | **name = "mymodel"** defines the name of the model that is shown to the user. |
---|
| 248 | If it is not provided, it will use the name of the model file, with '_' |
---|
| 249 | replaced by spaces and the parts capitalized. So *adsorbed_layer.py* will |
---|
| 250 | become *Adsorbed Layer*. The predefined models all use the name of the |
---|
| 251 | model file as the name of the model, so the default may be changed. |
---|
| 252 | |
---|
| 253 | **title = "short description"** is short description of the model which |
---|
| 254 | is included after the model name in the automatically generated documentation. |
---|
[7f23423] | 255 | The title can also be used for a tooltip. |
---|
[05829fb] | 256 | |
---|
| 257 | **description = """doc string"""** is a longer description of the model. It |
---|
[7f23423] | 258 | shows up when you press the "Description" button of the SasView FitPage. |
---|
[05829fb] | 259 | It should give a brief description of the equation and the parameters |
---|
| 260 | without the need to read the entire model documentation. The triple quotes |
---|
| 261 | allow you to write the description over multiple lines. Keep the lines |
---|
| 262 | short since the GUI will wrap each one separately if they are too long. |
---|
[7f23423] | 263 | **Make sure the parameter names in the description match the model definition!** |
---|
[05829fb] | 264 | |
---|
| 265 | **category = "shape:sphere"** defines where the model will appear in the |
---|
| 266 | model documentation. In this example, the model will appear alphabetically |
---|
[7f23423] | 267 | in the list of spheroid models in the *Shape* category. |
---|
[05829fb] | 268 | |
---|
| 269 | **single = True** indicates that the model can be run using single |
---|
| 270 | precision floating point values. Set it to False if the numerical |
---|
| 271 | calculation for the model is unstable, which is the case for about 20 of |
---|
| 272 | the built in models. It is worthwhile modifying the calculation to support |
---|
| 273 | single precision, allowing models to run up to 10 times faster. The |
---|
| 274 | section `Test_Your_New_Model`_ describes how to compare model values for |
---|
| 275 | single vs. double precision so you can decide if you need to set |
---|
| 276 | single to False. |
---|
| 277 | |
---|
| 278 | **opencl = False** indicates that the model should not be run using OpenCL. |
---|
| 279 | This may be because the model definition includes code that cannot be |
---|
| 280 | compiled for the GPU (for example, goto statements). It can also be used |
---|
| 281 | for large models which can't run on most GPUs. This flag has not been |
---|
| 282 | used on any of the built in models; models which were failing were |
---|
| 283 | streamlined so this flag was not necessary. |
---|
| 284 | |
---|
| 285 | **structure_factor = True** indicates that the model can be used as a |
---|
| 286 | structure factor to account for interactions between particles. See |
---|
| 287 | `Form_Factors`_ for more details. |
---|
| 288 | |
---|
| 289 | Model Parameters |
---|
| 290 | ................ |
---|
| 291 | |
---|
| 292 | Next comes the parameter table. For example:: |
---|
| 293 | |
---|
| 294 | # pylint: disable=bad-whitespace, line-too-long |
---|
| 295 | # ["name", "units", default, [min, max], "type", "description"], |
---|
| 296 | parameters = [ |
---|
| 297 | ["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Layer scattering length density"], |
---|
| 298 | ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", "Solvent scattering length density"], |
---|
| 299 | ["radius", "Ang", 50, [0, inf], "volume", "Sphere radius"], |
---|
| 300 | ] |
---|
[31d7803] | 301 | # pylint: enable=bad-whitespace, line-too-long |
---|
[05829fb] | 302 | |
---|
| 303 | **parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]** |
---|
[7f23423] | 304 | defines the parameters that form the model. |
---|
[05829fb] | 305 | |
---|
[7f23423] | 306 | **Note: The order of the parameters in the definition will be the order of the |
---|
| 307 | parameters in the user interface and the order of the parameters in Iq(), |
---|
| 308 | Iqxy() and form_volume(). And** *scale* **and** *background* **parameters are |
---|
| 309 | implicit to all models, so they do not need to be included in the parameter table.** |
---|
[05829fb] | 310 | |
---|
[7f23423] | 311 | - **"name"** is the name of the parameter shown on the FitPage. |
---|
[05829fb] | 312 | |
---|
| 313 | - parameter names should follow the mathematical convention; e.g., |
---|
[7f23423] | 314 | *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*. |
---|
| 315 | |
---|
[05829fb] | 316 | - model parameter names should be consistent between different models, |
---|
| 317 | so *sld_solvent*, for example, should have exactly the same name |
---|
[7f23423] | 318 | in every model. |
---|
| 319 | |
---|
[05829fb] | 320 | - to see all the parameter names currently in use, type the following in the |
---|
| 321 | python shell/editor under the Tools menu:: |
---|
| 322 | |
---|
| 323 | import sasmodels.list_pars |
---|
| 324 | sasmodels.list_pars.list_pars() |
---|
| 325 | |
---|
| 326 | *re-use* as many as possible!!! |
---|
[7f23423] | 327 | |
---|
[05829fb] | 328 | - use "name[n]" for multiplicity parameters, where *n* is the name of |
---|
| 329 | the parameter defining the number of shells/layers/segments, etc. |
---|
| 330 | |
---|
| 331 | - **"units"** are displayed along with the parameter name |
---|
| 332 | |
---|
[7f23423] | 333 | - every parameter should have units; use "None" if there are no units. |
---|
| 334 | |
---|
[05829fb] | 335 | - **sld's should be given in units of 1e-6/Ang^2, and not simply |
---|
| 336 | 1/Ang^2 to be consistent with the builtin models. Adjust your formulas |
---|
| 337 | appropriately.** |
---|
[7f23423] | 338 | |
---|
[05829fb] | 339 | - fancy units markup is available for some units, including:: |
---|
| 340 | |
---|
| 341 | Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2 |
---|
| 342 | |
---|
| 343 | - the list of units is defined in the variable *RST_UNITS* within |
---|
| 344 | `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_ |
---|
| 345 | |
---|
| 346 | - new units can be added using the macros defined in *doc/rst_prolog* |
---|
| 347 | in the sasmodels source. |
---|
| 348 | - units should be properly formatted using sub-/super-scripts |
---|
| 349 | and using negative exponents instead of the / operator, though |
---|
| 350 | the unit name should use the / operator for consistency. |
---|
[7f23423] | 351 | - please post a message to the SasView developers mailing list with your changes. |
---|
[05829fb] | 352 | |
---|
[7f23423] | 353 | - **default** is the initial value for the parameter. |
---|
[05829fb] | 354 | |
---|
| 355 | - **the parameter default values are used to auto-generate a plot of |
---|
| 356 | the model function in the documentation.** |
---|
| 357 | |
---|
[7f23423] | 358 | - **[min, max]** are the lower and upper limits on the parameter. |
---|
| 359 | |
---|
| 360 | - lower and upper limits can be any number, or *-inf* or *inf*. |
---|
[05829fb] | 361 | |
---|
| 362 | - the limits will show up as the default limits for the fit making it easy, |
---|
| 363 | for example, to force the radius to always be greater than zero. |
---|
| 364 | |
---|
[7f23423] | 365 | - **"type"** can be one of: "", "sld", "volume", or "orientation". |
---|
[05829fb] | 366 | |
---|
| 367 | - "sld" parameters can have magnetic moments when fitting magnetic models; |
---|
| 368 | depending on the spin polarization of the beam and the $q$ value being |
---|
| 369 | examined, the effective sld for that material will be used to compute the |
---|
[7f23423] | 370 | scattered intensity. |
---|
| 371 | |
---|
[05829fb] | 372 | - "volume" parameters are passed to Iq(), Iqxy(), and form_volume(), and |
---|
| 373 | have polydispersity loops generated automatically. |
---|
[7f23423] | 374 | |
---|
[05829fb] | 375 | - "orientation" parameters are only passed to Iqxy(), and have angular |
---|
| 376 | dispersion. |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | Model Computation |
---|
| 380 | ................. |
---|
| 381 | |
---|
| 382 | Models can be defined as pure python models, or they can be a mixture of |
---|
| 383 | python and C models. C models are run on the GPU if it is available, |
---|
| 384 | otherwise they are compiled and run on the CPU. |
---|
| 385 | |
---|
| 386 | Models are defined by the scattering kernel, which takes a set of parameter |
---|
| 387 | values defining the shape, orientation and material, and returns the |
---|
| 388 | expected scattering. Polydispersity and angular dispersion are defined |
---|
| 389 | by the computational infrastructure. Any parameters defined as "volume" |
---|
| 390 | parameters are polydisperse, with polydispersity defined in proportion |
---|
| 391 | to their value. "orientation" parameters use angular dispersion defined |
---|
| 392 | in degrees, and are not relative to the current angle. |
---|
| 393 | |
---|
| 394 | Based on a weighting function $G(x)$ and a number of points $n$, the |
---|
| 395 | computed value is |
---|
| 396 | |
---|
| 397 | .. math:: |
---|
| 398 | |
---|
| 399 | \hat I(q) |
---|
| 400 | = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx} |
---|
| 401 | \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)} |
---|
| 402 | |
---|
| 403 | That is, the indivdual models do not need to include polydispersity |
---|
| 404 | calculations, but instead rely on numerical integration to compute the |
---|
| 405 | appropriately smeared pattern. Angular dispersion values over polar angle |
---|
| 406 | $\theta$ requires an additional $\cos \theta$ weighting due to decreased |
---|
| 407 | arc length for the equatorial angle $\phi$ with increasing latitude. |
---|
| 408 | |
---|
| 409 | Python Models |
---|
| 410 | ............. |
---|
| 411 | |
---|
[7f23423] | 412 | For pure python models, define the *Iq* function:: |
---|
[05829fb] | 413 | |
---|
| 414 | import numpy as np |
---|
| 415 | from numpy import cos, sin, ... |
---|
| 416 | |
---|
| 417 | def Iq(q, par1, par2, ...): |
---|
| 418 | return I(q, par1, par2, ...) |
---|
| 419 | Iq.vectorized = True |
---|
| 420 | |
---|
| 421 | The parameters *par1, par2, ...* are the list of non-orientation parameters |
---|
| 422 | to the model in the order that they appear in the parameter table. |
---|
[7f23423] | 423 | **Note that the autogenerated model file uses** *x* **rather than** *q*. |
---|
[05829fb] | 424 | |
---|
| 425 | The *.py* file should import trigonometric and exponential functions from |
---|
[7f23423] | 426 | numpy rather than from math. This lets us evaluate the model for the whole |
---|
[05829fb] | 427 | range of $q$ values at once rather than looping over each $q$ separately in |
---|
| 428 | python. With $q$ as a vector, you cannot use if statements, but must instead |
---|
| 429 | do tricks like |
---|
| 430 | |
---|
| 431 | :: |
---|
| 432 | |
---|
| 433 | a = x*q*(q>0) + y*q*(q<=0) |
---|
| 434 | |
---|
| 435 | or |
---|
| 436 | |
---|
| 437 | :: |
---|
| 438 | |
---|
| 439 | a = np.empty_like(q) |
---|
| 440 | index = q>0 |
---|
| 441 | a[index] = x*q[index] |
---|
| 442 | a[~index] = y*q[~index] |
---|
| 443 | |
---|
| 444 | which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$ |
---|
| 445 | is zero or negative. If you have not converted your function to use $q$ |
---|
| 446 | vectors, you can set the following and it will only receive one $q$ |
---|
| 447 | value at a time:: |
---|
| 448 | |
---|
| 449 | Iq.vectorized = False |
---|
| 450 | |
---|
| 451 | Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in |
---|
| 452 | barbell). If I(q; pars) is NaN for any $q$, then those parameters will be |
---|
| 453 | ignored, and not included in the calculation of the weighted polydispersity. |
---|
| 454 | |
---|
| 455 | Similar to *Iq*, you can define *Iqxy(qx, qy, par1, par2, ...)* where the |
---|
| 456 | parameter list includes any orientation parameters. If *Iqxy* is not defined, |
---|
| 457 | then it will default to *Iqxy = Iq(sqrt(qx**2+qy**2), par1, par2, ...)*. |
---|
| 458 | |
---|
| 459 | Models should define *form_volume(par1, par2, ...)* where the parameter |
---|
| 460 | list includes the *volume* parameters in order. This is used for a weighted |
---|
| 461 | volume normalization so that scattering is on an absolute scale. If |
---|
[7f23423] | 462 | *form_volume* is not defined, then the default *form_volume = 1.0* will be |
---|
[05829fb] | 463 | used. |
---|
| 464 | |
---|
| 465 | Embedded C Models |
---|
| 466 | ................. |
---|
| 467 | |
---|
[7f23423] | 468 | Like pure python models, inline C models need to define an *Iq* function:: |
---|
[05829fb] | 469 | |
---|
| 470 | Iq = """ |
---|
| 471 | return I(q, par1, par2, ...); |
---|
| 472 | """ |
---|
| 473 | |
---|
| 474 | This expands into the equivalent C code:: |
---|
| 475 | |
---|
| 476 | #include <math.h> |
---|
| 477 | double Iq(double q, double par1, double par2, ...); |
---|
| 478 | double Iq(double q, double par1, double par2, ...) |
---|
| 479 | { |
---|
| 480 | return I(q, par1, par2, ...); |
---|
| 481 | } |
---|
| 482 | |
---|
| 483 | The C model operates on a single $q$ value at a time. The code will be |
---|
| 484 | run in parallel across different $q$ values, either on the graphics card |
---|
| 485 | or the processor. |
---|
| 486 | |
---|
| 487 | Rather than returning NAN from Iq, you must define the *INVALID(v)*. The |
---|
| 488 | *v* parameter lets you access all the parameters in the model using |
---|
| 489 | *v.par1*, *v.par2*, etc. For example:: |
---|
| 490 | |
---|
| 491 | #define INVALID(v) (v.bell_radius < v.radius) |
---|
| 492 | |
---|
| 493 | *Iqxy* is similar to *Iq*, except it uses parameters *qx, qy* instead of *q*, |
---|
| 494 | and it includes orientation parameters. As in python models, *form_volume* |
---|
| 495 | includes only the volume parameters. *Iqxy* will default to |
---|
| 496 | *Iq(sqrt(qx**2 + qy**2), par1, ...)* and *form_volume* will default to 1.0. |
---|
| 497 | |
---|
| 498 | The C code follows the C99 standard, including the usual math functions, |
---|
| 499 | as defined in |
---|
| 500 | `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. |
---|
| 501 | |
---|
| 502 | The standard constants and functions include the following:: |
---|
| 503 | |
---|
| 504 | M_PI = pi |
---|
| 505 | M_PI_2 = pi/2 |
---|
| 506 | M_PI_4 = pi/4 |
---|
| 507 | M_E = e |
---|
| 508 | M_SQRT1_2 = 1/sqrt(2) |
---|
| 509 | NAN = NaN |
---|
| 510 | INFINITY = 1/0 |
---|
| 511 | erf(x) = error function |
---|
| 512 | erfc(x) = 1-erf(x) |
---|
| 513 | expm1(x) = exp(x) - 1 |
---|
| 514 | tgamma(x) = gamma function |
---|
| 515 | |
---|
| 516 | Some non-standard constants and functions are also provided:: |
---|
| 517 | |
---|
| 518 | M_PI_180 = pi/180 |
---|
| 519 | M_4PI_3 = 4pi/3 |
---|
| 520 | square(x) = x*x |
---|
| 521 | cube(x) = x*x*x |
---|
| 522 | sinc(x) = sin(x)/x, with sin(0)/0 -> 1 |
---|
| 523 | SINCOS(x, s, c) sets s=sin(angle) and c=cos(angle) |
---|
| 524 | powr(x, y) = x^y for x >= 0 |
---|
| 525 | pown(x, n) = x^n for n integer |
---|
| 526 | |
---|
| 527 | **source=['lib/fn.c', ...]** includes the listed C source files in the |
---|
| 528 | program before *Iq* and *Iqxy* are defined. This allows you to extend the |
---|
| 529 | library of available C functions. Additional special functions and |
---|
| 530 | scattering calculations are defined in |
---|
| 531 | `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_, |
---|
| 532 | including:: |
---|
| 533 | |
---|
| 534 | sph_j1c(x) = 3 j1(x)/x = 3 (sin(x) - x cos(x))/x^3 [spherical bessel function] |
---|
| 535 | sas_J1c(x) = 2 J1(x)/x [bessel function of the first kind] |
---|
| 536 | sas_gamma(x) = gamma function [tgamma is unstable below 1] |
---|
| 537 | sas_erf(x) = error function [erf is broken on some Intel OpenCL drivers] |
---|
| 538 | sas_erfc(x) = 1-erf(x) |
---|
| 539 | sas_J0(x) = J0(x) |
---|
| 540 | sas_J1(x) = J1(x) |
---|
| 541 | sas_JN(x) = JN(x) |
---|
| 542 | Si(x) = integral sin(z)/z from 0 to x |
---|
| 543 | Gauss76Wt = gaussian quadrature weights for 76 point integral |
---|
| 544 | Gauss76Z = gaussian quadrature values for 76 point integral |
---|
| 545 | |
---|
| 546 | These functions have been tuned to be fast and numerically stable down |
---|
| 547 | to $q=0$ even in single precision. In some cases they work around bugs |
---|
[7f23423] | 548 | which appear on some platforms but not others. So use them where needed!!! |
---|
[05829fb] | 549 | |
---|
| 550 | Models are defined using double precision declarations for the |
---|
| 551 | parameters and return values. Declarations and constants will be converted |
---|
| 552 | to float or long double depending on the precision requested. |
---|
[7f23423] | 553 | |
---|
[05829fb] | 554 | **Floating point constants must include the decimal point.** This allows us |
---|
| 555 | to convert values such as 1.0 (double precision) to 1.0f (single precision) |
---|
| 556 | so that expressions that use these values are not promoted to double precision |
---|
| 557 | expressions. Some graphics card drivers are confused when functions |
---|
| 558 | that expect floating point values are passed integers, such as 4*atan(1); it |
---|
| 559 | is safest to not use integers in floating point expressions. Even better, |
---|
| 560 | use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller! |
---|
| 561 | |
---|
| 562 | FLOAT_SIZE is the number of bytes in the converted variables. If your |
---|
| 563 | algorithm depends on precision (which is not uncommon for numerical |
---|
| 564 | algorithms), use the following:: |
---|
| 565 | |
---|
| 566 | #if FLOAT_SIZE>4 |
---|
| 567 | ... code for double precision ... |
---|
| 568 | #else |
---|
| 569 | ... code for single precision ... |
---|
| 570 | #endif |
---|
| 571 | |
---|
| 572 | A value defined as SAS_DOUBLE will stay double precision; this should |
---|
[7f23423] | 573 | not be used since some graphics cards do not support double precision. |
---|
[05829fb] | 574 | |
---|
| 575 | |
---|
| 576 | External C Models |
---|
| 577 | ................. |
---|
| 578 | |
---|
| 579 | External C models are very much like embedded C models, except that |
---|
| 580 | *Iq*, *Iqxy* and *form_volume* are defined in an external source file |
---|
| 581 | loaded using the *source=[...]* method. You need to supply the function |
---|
| 582 | declarations for each of these that you need instead of building them |
---|
| 583 | automatically from the parameter table. |
---|
| 584 | |
---|
| 585 | |
---|
| 586 | .. _Form_Factors: |
---|
| 587 | |
---|
| 588 | Form Factors |
---|
| 589 | ............ |
---|
| 590 | |
---|
| 591 | Away from the dilute limit you can estimate scattering including |
---|
| 592 | particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$ |
---|
| 593 | is the form factor and $S(q)$ is the structure factor. The simplest |
---|
| 594 | structure factor is the *hardsphere* interaction, which |
---|
| 595 | uses the effective radius of the form factor as an input to the structure |
---|
| 596 | factor model. The effective radius is the average radius of the |
---|
| 597 | form averaged over all the polydispersity values. |
---|
| 598 | |
---|
[31d7803] | 599 | :: |
---|
| 600 | |
---|
| 601 | def ER(radius, thickness): |
---|
| 602 | """Effective radius of a core-shell sphere.""" |
---|
| 603 | return radius + thickness |
---|
| 604 | |
---|
| 605 | Now consider the *core_shell_sphere*, which has a simple effective radius |
---|
[05829fb] | 606 | equal to the radius of the core plus the thickness of the shell, as |
---|
| 607 | shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and |
---|
| 608 | *(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh |
---|
| 609 | grid covering all possible combinations of radius and thickness. |
---|
| 610 | That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)* |
---|
| 611 | and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*. |
---|
| 612 | The *ER* function returns one effective radius for each combination. |
---|
| 613 | The effective radius calculator weights each of these according to |
---|
| 614 | the polydispersity distributions and calls the structure factor |
---|
| 615 | with the average *ER*. |
---|
| 616 | |
---|
| 617 | :: |
---|
| 618 | |
---|
| 619 | def VR(radius, thickness): |
---|
| 620 | """Sphere and shell volumes for a core-shell sphere.""" |
---|
| 621 | whole = 4.0/3.0 * pi * (radius + thickness)**3 |
---|
| 622 | core = 4.0/3.0 * pi * radius**3 |
---|
| 623 | return whole, whole - core |
---|
| 624 | |
---|
| 625 | Core-shell type models have an additional volume ratio which scales |
---|
| 626 | the structure factor. The *VR* function returns the volume of |
---|
| 627 | the whole sphere and the volume of the shell. Like *ER*, there is |
---|
| 628 | one return value for each point in the mesh grid. |
---|
| 629 | |
---|
[31d7803] | 630 | *NOTE: we may be removing or modifying this feature soon. As of the |
---|
| 631 | time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume |
---|
| 632 | ratio of 1.0.* |
---|
[05829fb] | 633 | |
---|
| 634 | Unit Tests |
---|
| 635 | .......... |
---|
| 636 | |
---|
| 637 | THESE ARE VERY IMPORTANT. Include at least one test for each model and |
---|
| 638 | PLEASE make sure that the answer value is correct (i.e. not a random number). |
---|
| 639 | |
---|
| 640 | :: |
---|
| 641 | |
---|
| 642 | tests = [ |
---|
| 643 | [{}, 0.2, 0.726362], |
---|
| 644 | [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1., |
---|
| 645 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
| 646 | 0.2, 0.228843], |
---|
| 647 | [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.], |
---|
| 648 | [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.], |
---|
| 649 | ] |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | **tests=[[{parameters}, q, result], ...]** is a list of lists. |
---|
| 653 | Each list is one test and contains, in order: |
---|
| 654 | |
---|
| 655 | - a dictionary of parameter values. This can be {} using the default |
---|
| 656 | parameters, or filled with some parameters that will be different |
---|
[cbbb6a4] | 657 | from the default, such as {ââ¬Ëradiusââ¬â¢:10.0, ââ¬Ësldââ¬â¢:4}. Unlisted parameters |
---|
[05829fb] | 658 | will be given the default values. |
---|
| 659 | - the input $q$ value or tuple of $(q_x, q_y)$ values. |
---|
| 660 | - the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters |
---|
| 661 | and input value given. |
---|
| 662 | - input and output values can themselves be lists if you have several |
---|
| 663 | $q$ values to test for the same model parameters. |
---|
| 664 | - for testing *ER* and *VR*, give the inputs as "ER" and "VR" respectively; |
---|
| 665 | the output for *VR* should be the sphere/shell ratio, not the individual |
---|
| 666 | sphere and shell values. |
---|
| 667 | |
---|
| 668 | .. _Test_Your_New_Model: |
---|
| 669 | |
---|
| 670 | Test Your New Model |
---|
| 671 | ^^^^^^^^^^^^^^^^^^^ |
---|
| 672 | |
---|
[e925f61] | 673 | Installed SasView |
---|
| 674 | ................. |
---|
| 675 | |
---|
[05829fb] | 676 | If you are editing your model from the SasView GUI, you can test it |
---|
[cbbb6a4] | 677 | by selecting *Run > Check Model* from the *Model Editor* menu bar. An |
---|
[05829fb] | 678 | *Info* box will appear with the results of the compilation and a |
---|
| 679 | check that the model runs. |
---|
| 680 | |
---|
[e925f61] | 681 | |
---|
| 682 | Built SasView |
---|
| 683 | ............. |
---|
| 684 | |
---|
[05829fb] | 685 | If the model compiles and runs, you can next run the unit tests that |
---|
[31d7803] | 686 | you have added using the **test =** values. Switch to the *Shell* tab |
---|
[05829fb] | 687 | and type the following:: |
---|
| 688 | |
---|
| 689 | from sasmodels.model_test import run_one |
---|
| 690 | run_one("~/.sasview/plugin_models/model.py") |
---|
| 691 | |
---|
| 692 | This should print:: |
---|
| 693 | |
---|
| 694 | test_model_python (sasmodels.model_test.ModelTestCase) ... ok |
---|
| 695 | |
---|
| 696 | To check whether single precision is good enough, type the following:: |
---|
| 697 | |
---|
| 698 | from sasmodels.compare import main |
---|
| 699 | main("~/.sasview/plugin_models/model.py") |
---|
| 700 | |
---|
| 701 | This will pop up a plot showing the difference between single precision |
---|
| 702 | and double precision on a range of $q$ values. |
---|
| 703 | |
---|
| 704 | :: |
---|
| 705 | |
---|
| 706 | demo = dict(scale=1, background=0, |
---|
| 707 | sld=6, sld_solvent=1, |
---|
| 708 | radius=120, |
---|
| 709 | radius_pd=.2, radius_pd_n=45) |
---|
| 710 | |
---|
| 711 | **demo={'par': value, ...}** in the model file sets the default values for |
---|
| 712 | the comparison. You can include polydispersity parameters such as |
---|
| 713 | *radius_pd=0.2, radius_pd_n=45* which would otherwise be zero. |
---|
| 714 | |
---|
| 715 | The options to compare are quite extensive; type the following for help:: |
---|
| 716 | |
---|
| 717 | main() |
---|
| 718 | |
---|
| 719 | Options will need to be passed as separate strings. |
---|
| 720 | For example to run your model with a random set of parameters:: |
---|
| 721 | |
---|
| 722 | main("-random", "-pars", "~/.sasview/plugin_models/model.py") |
---|
| 723 | |
---|
| 724 | For the random models, |
---|
| 725 | |
---|
[31d7803] | 726 | - *sld* will be in the range (-0.5,10.5), |
---|
| 727 | - angles (*theta, phi, psi*) will be in the range (-180,180), |
---|
| 728 | - angular dispersion will be in the range (0,45), |
---|
| 729 | - polydispersity will be in the range (0,1) |
---|
| 730 | - other values will be in the range (0, 2\ *v*), where *v* is the value of the parameter in demo. |
---|
[05829fb] | 731 | |
---|
[31d7803] | 732 | Dispersion parameters *n*\, *sigma* and *type* will be unchanged from demo so that |
---|
[05829fb] | 733 | run times are predictable. |
---|
| 734 | |
---|
| 735 | If your model has 2D orientational calculation, then you should also |
---|
| 736 | test with:: |
---|
| 737 | |
---|
| 738 | main("-2d", "~/.sasview/plugin_models/model.py") |
---|
| 739 | |
---|
| 740 | |
---|
[e925f61] | 741 | Clean Lint - (Developer Version Only) |
---|
| 742 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
[05829fb] | 743 | |
---|
[e925f61] | 744 | **NB: For now we are not providing pylint with the installer version of SasView; |
---|
| 745 | so unless you have a SasView build environment available, you can ignore this section!** |
---|
[05829fb] | 746 | |
---|
| 747 | Run the lint check with:: |
---|
| 748 | |
---|
| 749 | python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py |
---|
| 750 | |
---|
| 751 | We are not aiming for zero lint just yet, only keeping it to a minimum. |
---|
| 752 | For now, don't worry too much about *invalid-name*. If you really want a |
---|
| 753 | variable name *Rg* for example because $R_g$ is the right name for the model |
---|
| 754 | parameter then ignore the lint errors. Also, ignore *missing-docstring* |
---|
| 755 | for standard model functions *Iq*, *Iqxy*, etc. |
---|
| 756 | |
---|
[31d7803] | 757 | We will have delinting sessions at the SasView Code Camps, where we can |
---|
[05829fb] | 758 | decide on standards for model files, parameter names, etc. |
---|
| 759 | |
---|
[31d7803] | 760 | For now, you can tell pylint to ignore things. For example, to align your |
---|
[05829fb] | 761 | parameters in blocks:: |
---|
| 762 | |
---|
| 763 | # pylint: disable=bad-whitespace,line-too-long |
---|
| 764 | # ["name", "units", default, [lower, upper], "type", "description"], |
---|
| 765 | parameters = [ |
---|
| 766 | ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], |
---|
| 767 | ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], |
---|
| 768 | ["virial_param", "1/Ang^2", 12.0, [-inf, inf], "", "Virial parameter"], |
---|
| 769 | ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], |
---|
| 770 | ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], |
---|
| 771 | ["ionization_degree", "", 0.05, [0, inf], "", "Degree of ionization"], |
---|
| 772 | ["polymer_concentration", "mol/L", 0.7, [0, inf], "", "Polymer molar concentration"], |
---|
| 773 | ] |
---|
| 774 | # pylint: enable=bad-whitespace,line-too-long |
---|
| 775 | |
---|
| 776 | Don't put in too many pylint statements, though, since they make the code ugly. |
---|
| 777 | |
---|
[e925f61] | 778 | Check The Docs - (Developer Version Only) |
---|
| 779 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
[05829fb] | 780 | |
---|
| 781 | You can get a rough idea of how the documentation will look using the |
---|
| 782 | following:: |
---|
| 783 | |
---|
| 784 | from sasmodels.generate import view_html |
---|
| 785 | view_html('~/.sasview/plugin_models/model.py') |
---|
| 786 | |
---|
| 787 | This does not use the same styling as the SasView docs, but it will allow |
---|
| 788 | you to check that your ReStructuredText and LaTeX formatting. Here are |
---|
| 789 | some tools to help with the inevitable syntax errors: |
---|
| 790 | |
---|
| 791 | - `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 792 | - `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ |
---|
| 793 | - `MathJax <http://www.mathjax.org/>`_ |
---|
| 794 | - `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 795 | |
---|
[31d7803] | 796 | There is also a neat online WYSIWYG ReStructuredText editor at http://rst.ninjs.org\ . |
---|
| 797 | |
---|
[e925f61] | 798 | Share Your Model! |
---|
| 799 | ^^^^^^^^^^^^^^^^^ |
---|
[05829fb] | 800 | |
---|
| 801 | Once compare and the unit test(s) pass properly and everything is done, |
---|
| 802 | consider adding your model to the |
---|
[e925f61] | 803 | `Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it! |
---|